INTRODUCTION TO
COMPOSITE MATERIALS

Stephen W, Tsai
U.S. Air Force Materials Laboratory

H. Thomas Hahn
Washington University




Published in the Western Hemisphere by
Technomic Publishing Company, Inc.
851 New Holland Avenue

Box 3535

Lancaster, Pennsylvania 17604 U.S.A.

Distributed in the Rest of the World by
Technomic Publishing AG

©1980 by Technomic Publishing Company, Inc.
All rights reserved

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Printed in the United States of America
10 98 7 6 5

Main entry under title:
Introduction to Composite Materials

A Technomic Publishing Company book
Bibliography: p.
Includes index p. 453

Library of Congress Card No. 80-51965
ISBN No: 0-87762-2884

e e

contents

chapter X page
1 stiffness of unidirectional composites 1
1. stress 2

2. strain 6

3. stress-strain relations 8

4. symmetry of compliance and stiffness 16

S. stiffness data for typical unidirectional composites 18

6. sample problems 20

7. conclusions : 23

8. homework problems - 25

2  transformation of stress and strain 31
1. background 32
2.-transformation of stress 35

3. numerical examples of stress transformation 44

4. transformation of strain 49

S. numerical examples of strain transformation 54

6. graphic interpretations of stress-strain relations 56

7. conclusions 60

8. homework problems ' 62

3  off-axis stiffness of unidirectional composites 65
1. off-axis stiffness modulus ‘ 66

2. examples of off-axis stiffness 77

3. off-axis compliance 88

4. examples of off-axis compliance ' 94

5. inverse relationship between stiffness and compliance 95



iv

6. off-axis engineering constants
7. conclusions
8. homework problems

in-plane stiffness of symmetric laminates

. laminate code

. in-plane stress-strain relations for laminates
. evaluation of in-plane stiffness modulus
. cross-ply laminates

. angle-ply laminates

. quasi-isotropic laminates

. general Pi/4 laminates

. general bidirectional laminates

. ply stress and ply strain analysis

10. conclusions

11. homework problems

O 001N PHh WK —

flexural stiffness of symmetric sandwich laminates

. laminate code

. moment-curvature relations .

. evaluation of flexural stiffness modulus S
. flexural behavior of unidirectional laminates

. flexural modulus of cross-ply laminates

. flexural modulus of angle-ply laminates

. ply stress and ply strain analysis

. conclusions

. homework problems

O 00 QO nHh WP —

properties of general laminates

. index and matrix notations

. stiffness and compliance of general laminates

. evaluation of components of stiffness

. unsymmetric cross-ply laminates

. antisymmetric laminates

. the parallel axis theorem

. transformation of the coupling stiffness and compliance
. conclusions

. homework problems

O 00J AN WnNDIH WN—

98

106 -

109

115
116
116
123
131

136

142
146
149
157

162
164 .

167
168
169
178
185
189
200
206
211
213

217
218
221
232
239
249
256
270
272
274

O 00NNV AWN —

strength of composite materials
- 1. failure criteria =~
. quadratic failure criterion
. sample strength data
. transformation equations for strength parameters
. strength/stress or strength ratios
. in-plane strength of laminates
. approximate first ply failure envelope
. conclusions
. homework problems

hygrothermal behavior

00O N H WM —

. heat conduction and moisture diffusion

. stress-strain relations including hygrothermal strains

. fabrication stresses

. residual stresses resulting from environmental change
. unsymmetric cross-ply laminates

. antisymmetric angle-ply laminates

. effect of residual stress on failure

. effects of temperature and moisture on properties of

unidirectional composites

. sample problems
10.
11.

conclusions
homework problems
references

micromechanics

wnHh W =

[@XNelie JEEN Jo))

. general remarks

. density of composite

. composite stresses and strains
. elastic moduli of composite

. modified rule-of-mixtures equations for
- transverse and shear moduli

. hygrothermal properties

. strengths

. sample problems

. conclusions

. homework problems

277
278
280
287
295
302
306
315
325
329

329
330
342
345
349
355
357
359

362
365
371
373
375

377
378
379
381
386

392
400
405
419
423
428




vi

appendix 9.1
appendix 9.2

references
appendix A transformation equations
appendix B unit conversion tables
appendix C  general references
index

. 424

426
431

433

445

449

451

£

preface

The objective of this book is to introduce the governing principles of
the stiffness and strength of uni- and multi-directional composite mate-
rials. It is intended as a textbook at the undergraduate and graduate
levels. It can also serve as a reference for the engineers in industry. A
course in strength of materials provides the desired background.

We hope to show that composite materials are conceptually simple.
They offer unique opportunities in design beyond being lighter sub-
stitutes of conventional materials. The structural performance offered
by composite materials is much more versatile than can be realized with
conventional materials. We can put such versatility to our advantage in
design through a full comprehension of the principles governing their
structural behavior. An elucidation of these principles is the underlying
theme of our book.

Our approach relies heavily on a unified and recurring formulation.
Closed form solutions and simplified formulas are presented whenever
possible. Figures, tables and charts of numerical results for one typical
composite material throughout the book are given. Since our book is
meant to be self-contained, references are given only when a set of
pertinent data and established concepts are cited, or when a detailed
derivation is omitted in the text. We wish to apologize for any inadver-
tent omissions. We are happy to see the rule-of-mixtures equations
applicable in many situations. We feel that the governing principles can
be presented more clearly if we separate geometric factors from mate-
rial properties whenever possible. Eventually, the reader will find that
transformation equations and the state of combined stresses are the key
concepts in the study of composite materials.

In addition to the basic text presented in nine chapters, a special
section on notation and terminology follows this preface. At the end of
each chapter, a principal nomenclature for that chapter is listed. Trans-
formation equations are summarized in Appendix A; unit conversion
tables, in Appendix B; and listing of general references in the English
language, in Appendix C.

This book is based in part on several United States Air Force reports
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written by us. We are indebted to.our colleagues for their invaluable
help. The opportunities to teach and to learn from the students at the
Composite Materials Computation Workshops at the University of
California at Berkeley, and at similar ones in Stuttgart, Tokyo, Osaka,
Peking, and other places are gratefully acknowledged. The formulas in
the book can be conveniently solved by programmable pocket calcula-
tors. Such programs are available from the authors.

STEPHEN W. TSAI
H. THOMAS HAHN

Dayton and St. Louis
May 1980
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notation and terminology

The choice of notation and terminology can be a source of confusion.
Definitions and explanations of our choice and format are listed as
follows:

The contracted notation is used which calls for the use of engi-
neering shear strain. (See Table 1.3)

Poisson’s ratios are defined in Equations 1.5 and 1.6 for the
on-axis unidirectional composites; in Table 3.15 for the off-axis.
They are different from those in existing literature.

The angles of coordinate transformation and ply orientation have
the same sign. Proper signs are incorporated in the equations such
that the transformation of stress and strain (the behavioral quanti-
ties) goes from the reference axes to the material symmetry axes.
The transformation of modulus, compliance, expansion ' coeffi-
cients and other properties of material goes from the material
symmetry axes to the reference axes; the opposite of the behav-
ioral quantities. Separate equations are listed in Appendix A to
show the differences.

The laminate code in Equations 4.1 and 5.1 follows ascending
order from the bottom to the top ply.

A balanced laminate means that each off-axis ply or ply group is
matched by one with opposite ply orientation. This is meaningful
only for the in-plane modulus. A balanced laminate will be ortho-
tropic in its in-plane behavior, but is not orthotropic in its flexural
behavior.

There are coupling coefficients beyond the traditional Poisson’s
ratio. The 61 and 62 components are the shear coupling coeffi-
cients; the 16 and 26, the normal coupling. Such coefficients can
be applied to off-axis unidirectional composites as in Table 3.15,
and to symmetric laminates in Equations 4.18 and 5.23 et al.
These coefficients are treated as engineering constants. Compar-
able coefficients are not defined for general laminates. These
laminates have unique couplings between the in-plane and flexural
behavior defined by the B or § matrix. -

ix




The curvature-displacement (k-w) relations in Equation 5.9 must
have negative signs. The twisting curvature must have a factor of 2
to be consistent with the engineering shear strain.

Symmetry is used for numerous situations.

a) Material property symmetry or reciprocity:
Qij = jS’ Al] = Aji’ etc.

b) Material symmetry in terms of structures:
Anisotropy, Orthotropy, Square Symmetry, Isotropy

¢) Odd and even symmetry of material property transformation:

0110) = Q1,(6 + nm), Qe6(0) = Uss <6 +£21>

Q,600)=—0,¢(—0), etc.

d)Midplane symmetry of a laminate:

Symmetric laminate: 0(z) =0(—z)
Asymmetric laminate: 0(z) #0(—2)
rAntisymmetric laminate: - 0(z) = —0(—z)

Shear is a source of ambiguity.

Longitudinal shear: 0, OF €

Longitudinal shear modulus: £

Longitudinal shear strength: §

In-plane shear: Ng
Interlaminar or transverse shears (g, , and 0,,,) are not covered or
discussed in this book.
Strength ratio is defined as the allowed over the applied stress or
strain, as in Equation 7.48. This should not be confused with the
stress ratio used in design handbooks. Stress ratio is the reciprocal
of our strength ratio. Both use R as the symbol.
Subscripts and superscripts are omitted from symbols if their
meaning is self-evident; e.g., U, means U, 10T U, gin Chapter 3;
V,means ¥V, 4, in Chapter 4, V| pin Chapter 5.
Incon31stency may exist in the last digit of numerical results due
to round-off.  Intermediate steps in calculations do not always
carry the correct exponent or units. The final step, however,
should be the correct answer with the correct units.

chapter 1
stiffness of
unidirectional composites

The stiffness of unidirectional composites, like any other structural
material, can be defined by appropriate stress-strain relations. We will
show that the coefficients or material constants of these relations can
be packaged in a set of engineering constants, compliance components,
or modulus components. The components of any one set are directly
expressible in terms of the components of the other sets. The stiffness of
unidirectional composites is governed by the same stress-strain relation
that isvalid for conventional materials. Only the number of independent
constants are four for composites and two for conventional materiais.




2 introduction to composite materials

1. stress

Stress is a measure of internal forces within a body. This together with
strain are the key variables for the determination of stiffness and
strength of a material. The mechanisms of deformation and failure are
also interpreted in terms of the state of stress and strain. They are the
fundamental variables for the mechanical behavior of materials similar
to temperature and heat flux for heat conduction; or pressure, volume
and temperature for gas.

There is no direct measurement for stress. Instead, stress is inferred
or derived from the following: ‘

® Applied forces using stress analysis.
® Measured displacements also using stress analysis.
.. ® Measured strains using stress-strain relations.

When we talk about stress we usually mean the average stress over some
physical dimension. This is similar to population measured over a city,
county or state. In our study of composites we deal with three levels of
average stress:

® Micromechanical or local stress is that calculation based on dis-
tinct, continuous phases of fiber, matrix and, in some cases, the
interface and voids.

® Ply stress is that calculation based on assumed homogeneity within
each ply or ply group where the fiber and matrix are smeared and
no longer recognized as distinct phases.

® Laminate stress resultant N or moment M is an average of ply
stresses across the thickness of a laminate. The individual plies are
smeared.

In Figure 1 we show two levels of this idealization of average stresses.

On the micromechanical level in (@) the fiber and matrix stresses vary
from point to point within each constituent phase. The average of these -

stresses is the ply stress. In a laminate or on the macromechanical level,
each ply or ply group has its own ply stress. The average of several ply
stresses is the laminate stress or stress resultant .

We will use contracted notation in this book. Single subscripts for -

stress and strain, and double subscripts for compliance and modulus
will ‘be followed. The conversion from the conventional or tensorial
notation to the contracted notation is shown in Table 1.1. ’

stiffness of unidirectional composites 3
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(a) (6)

Figure 1.1 Schematic relations between local and
average stresses:

(@) Micromechanical level where stresses in fiber
and matrix are recognized. This average is the
ply stress.

(b) Macromechanical level where stresses in plies
and ply groups are recognized. This average is
the laminate stress.

il

[Lii1]

table 1.1

stress components in contracted notation

Conventional or

tensorial notation Contracted notation

x xx [0 011 g, or (5]
y yy g, Ja2g Uy or ¢ 23
Oxy Oxy 012 J12 O or Og

The single subscript system can be readily extended to the index nota-
tion to be introduced later. The subscript s or 6 is therefore used to
designate the shear component in the x-y plane. The use of subscript 6
for the shear stress component is derived from the 6 components in

~3-dimensional.stress. Although subscript 3 has occasionally been used

for this shear component, it is a source of confusion since 3 can also be
used for the 3rd normal stress component in 3-dimensional problems.
Subscript 6 is used to avoid this confusion. ,

The state of stress in a ply or ply group is predominantly plane stress.
The nonzero components of plane stress are those listed in Table 1.1.
The remaining three components are of secondary and local nature and
will not be treated in this book. It is convenient to represent the state
of plane stress in a 3-dimensional stress-space where the three orthog-
onal axes correspond to the three stress components. The stress-space is
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shown in Figure 1.2. Here each applied stress, represented by three
stress components, can be readily portrayed as a vector in this 3-
dimensional space. The unit vector which signifies the direction of the
applied stress is represented by the conventional notation of

@@4.k)
where the components of the unit vectors are directional cosines. All
three unit vectors are shown in Figure 1.2. Typical unit vectors for
simple states of stress will be shown in the following table.

o
7, .
-/ ‘
»; oy i
’ .
o; %

Figure 1.2 Stress components Figure 1.3 Longitudinal
in 3-dimensional stress-space. uniaxial stresses in tension
Unit stress vectors are also and compression. The
shown as arrows. respective unit vectors

are (+1,0,0).
gy .

1 _
= | =
T =]

%
% % |

)
9

Figure 1.4 Transverse Figure 1.5 Positive and negative
uniaxial stress in tension longitudinal shears. The

and compression. The respective unit vectors are
respective unit vectors (0,0,%1).

are (0,%1,0).

stiffness of unidirectional composites 5

table 1.2

unit vectors for simple stress states
Type of stress Unit vector Figure no.

Longitudinal tension ‘ (1,0,0) 1.3
Longitudinal compression (-1,0,0) 1.3
Transverse tension (0,1,0) 1.4
Transverse compression 0,—1,0) 14
Positive longitudinal shear (0,0,1) 1.5
Negative longitudinal shear 0,0,—1) 1.5

The sign convention must be observed faithfully when we deal with
composites. The difference between tensile and compressive strengths
may be several hundred percent. Moreover, there can be an even greater
difference between positive and negative shear strengths in composites.
For conventional materials signs are often immaterial, but here this
attitude can be fatal. We must be precise and accurate about signs. This
is a necessary discipline when we work with composites.

In Figure 1.6 the sign convention is shown in detail. All components
in (@) are positive; in (b) negative. For the normal components, signs are
no problem. Shear, however, is more difficult. The rule is that a shear is
positive if the shear is acting on a positive face and directed toward a
positive axis; or the shear is positive if it is acting on a negative face and
directed toward a negative axis. Thus, two positives or two negatives
would make a positive shear. If we have a mixture of positive and
negative the shear is negative.

T}’ T)’

T”r l‘oi

o -

b o =R
- —y —_— —— lQ— —e X
-—l T—'_as-
(a) (b)

Figure 1.6 Sign convention for stress
components:

(a) All components shown are positive.
(b) All components shown are negative.
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2. strain

Relative displacements in a plane will induce 2-dimensional strain. If
the displacements do not vary from point to point within a material,
there will only be rigid body motion and no strain. Thus, strain is
simply the spatial variation of the displacements. There is no material
property involved. Strain is related to displacement. Both are geometric
quantities.

From the definition of strain, we can establish the stress-strain rela-
tion. The constants in this relation govern the stiffness of composites.
This process is the same for conventional materials.

Let Ax = Relative infinitesimal displacement along the x-axis
Av = Relative infinitesimal displacement along the y-axis

From Figure 1.7 we can define:

(1.1)

¥ The partial differentiation is used be-
cause the displacements are functions of
av both x and y coordinates. Strain, - like
stress, is a local property. In general it
ay ; varies from point to point in a material.
ax AU i Only in special cases is the state of strain or
stress uniform; we call this homogeneous
Figure 1.7 Normal strain strain or stress. This special case is perti-
. and displacement relations. nent to testing for property determination
where  we  deliberately try to create a

simple, homogeneous strain or stress.

Note that the normal strain components are associated with changes
in ‘the lengths of -an . infinitesimal element. The rectangular element
before deformation remains rectangular although its length and width
may change. There is no distortion produced by the normal strain
components. Distortion is measured by the change of angles. The
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original rectangular element would be distorted into a parallelogram.
Geometrically this is equivalent to stretching one diagonal and com-
pressing the other. This combined action will produce distortion which
is measured by shear strain. Figure 1.8 shows the combined action
produced by the same displacements that produced the normal strain
components in Equation 1.1. The desired shear strain is:

es=a+b (1.2)
where a = tanaé?
(1.3)
b = tanbE%
oy
y y
4¢ du
N
ad Q 7
ay O 17\ oo
] b o \ -bar\ Q 7
av Y X
tax X v
+—1
(a) (b)

Figure 1.8 The strain-displacement relation for shear
strain. The arrows show the stretching and compressing
of the diagonals. This shear strain is positive in (a); and
negative in (b).

The resulting strain displacement relation is

€ =_B_V_+_a_z_t_

This is the engineering shear strain which is twice the tensorial strain.
Engineering shear strain is used because it measures the total change in
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angle, or the total angle of twist in the case of a rod under torsion. This
factor of 2 is often a source of confusion. When in doubt, the strain-
displacement relation, in Equation 1.4, is the best place for clari-
fication.

As with stress, contracted notation will be used for strain com-
ponents. The conversion table between the components of the conven-

tional or tensorial strain and the contracted strain is shown in

Table 1.3.
table 1.3
strain components in contracted notation
Contracted
Conventional or tensorial notation notation
€x €xx €1 €11 €, OT €;
€ ny €2 €22 (:‘y or €,
2€xy 2€xy 2612 2612 €, Or €¢

Strain vectors can also be portrayed in strain-space. Because of the

coupling between the normal strain components, known as the
Poisson’s effect, the response to a uniaxial stress creates a biaxial strain
state. For example, for conventional as well as unidirectional materials
an extension is coupled with a lateral contraction if the applied uniaxial
stress is tensile. In Figure 1.9 we will show the unit strain vectors as the
result of uniaxial longitudinal and transverse tensile stresses in (a) and
(b), respectively. If the applied stress is compressive, the direction of all
the stress and strain unit vectors will be reversed.

3. stress-strain relations

We will limit the composites of this book to the linearly elastic mate-
rials. The response of materials under stress or strain follows a straight
line up to failure. With assumed linearity we can use superposition
which is a very powerful tool. For example, the net result of combining
two states of stress is precisely the sum of the two states—no more and
no less. The sequence of the stress application is immaterial. We can
assemble or disect components of stress and strain in whatever pattern

stiffness of unidirectional composites 9

9
- =
'
Ox %
€ g
,‘é—‘ €,
(a) (b)

Figure 1.9 Unit strain vectors resulting from uniaxial
stresses.
(a) Biaxial strain (1,—»,0) resulting from uniaxial
stress (1,0,0).
(b) Biaxial strain (—»,1,0) resulting from uniaxial
stress (0,1,0).

we choose without affecting the result. Combined stresses are the sum of

simple, uniaxial stresses. The addition is done component by component.

Secohdly, elasticity means full reversibility. We can load, unload and
reload a material without incurring any permanent strain or hysteresis.
Elasticity also means that the material’s response is instantaneous.
There is no time lag, no time or rate dependency.

Experimentally observed behavior of composites follows closer to
linear elasticity than nearly all metals and nonreinforced plastics. The
assumed linear elasticity for composites appears to be reasonable. If we
are to go beyond the linearity assumption, such as the incorporation of
nonlinear elasticity, plasticity and viscoelasticity, the increased com-
plexity is beyond the scope of this book.

For unidirectional composites, the stress-strain relations can be
derived by the superposition method. We must recognize that two
orthogonal planes of symmetry exist for unidirectional composites: one
plane is parallel to the fibers; and the other is transverse to the fibers.
Symmetry exists when the structure of the material on one side of the
plane is the mirror image of the structure on the other side. The two
orthogonal planes are shown in Figure 1.10, where the x-axis is along
the longitudinal direction of the fiber while the y-axis is in the




transverse direction. When the
reference axes x-y coincide with the
material symmetry axes, we call
this the on-axis orientation. The
stress-strain relation in this chapter
is limited to this special case. The
off-axis orientation will be dis-
cussed in Chapter 3.

The on-axis stress-strain relation

Figure 1.10 Two orthotropic
planes of symmetry of unidirectional can be derived by superpositioning

composites. Axes x-y coincide with . .
the longitudinal and transverse the results of the following simple

directions. This material symmetry is tests:
called orthotropic and on-axis.

a. uniaxial longitudinal tests

The applied uniaxial stress and the resulting biaxial strain were shown
in Figure 1.9(a). The stress-strain curves for this test are shown in Figure

1.11, from which we can establish the following stress-strain relations:

€, = ZI; o,
b, (1.5)
€, = E—;ox Vy €,
where E, = Longitudinal Young’s modulus, also designated E;
v, = Longitudinal Poisson’s ratio = —-%i
x

(This is also called the major Poisson’s ratio, and desig-
nated by v, r, v, 5, Or sometimes v, .)

4 aA-'
—

- e ;

!
Ex - —

/ :
€ | I
-€ &

Figure 1.11 Uniaxial longitudinal tensile test. A square
will be deformed into a rectangle.
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b. uniaxial transverse tests

The applied uniaxial stress and the resulting biaxial strain were shown
in Figure 1.9(b). The stress-strain curves for this test were shown in

Figure 1.12, from which the following stress-strain relations can be
established:

1
€, = —g¢
y y
E,
1.6
., (1.6)
€ = _F O'y *fvy €y
Y
where Ey = Transverse Young’s modulus, also designated E
€
v, = Transverse Poisson’s ratio = — —=
€

"y
(This is also called the minor Poiss‘on"s ratio, and desig-
nated by vy, , orv,, or sometimes v, ,.)

Gy
4
— Omm—
%
Y
/
s = €

Figure 1.12 Uniaxial transverse tensile test.

c. longitudinal shear test

We apply another simple state of stress, the pure shear, to our unidirec-
tional composite. This is shown in Figure 1.13. The resulting stress-
strain relation is:

€, =

1
E US (1-7)
$
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where £, = Longitudinal shear modulus
(This is also called longitudinal-transverse shear modulus
and designated by G; r or G, ,.)

o

Figure 1.13 Longitudinal shear test. A square
is distorted into a parallelogram.

By applying the principle of superposition, we can sum up the contri-
bution of each stress component in Equation 1.5, 1.6 and 1.7 to the
resulting strain components. The final stress-strain relation for our uni-
directional composite is:

S S
€, & -.'E:Ux E;Uy
Yy 1 |
€, =——0, +—20 (1.8)
7 E, " E, 7 «
1
Es = —E'—Os

This is the on-axis stress-strain relation of a unidirectional composite;
i.e., the material is in its orthotropic symmetry orientation. Conven-
tional materials have the same functional relations.

These simultaneous equations can be repackaged in a matrix multipli-
cation table, wherein each row in the table is equal to the sum of
products from each column and its column heading. This rule should be
self-evident if we compare the first of Equation 1.8 with the first row
of Table 1.4. This and all subsequent tables will be drawn in italics
when matrix multiplication is in force.

stiffness of unidirectional composites 13

table 1.4
on-axis stress-strain relation for unidirectional
composites in terms of engineering constants

% 9% %
& A /2

g 2
s K3 A

& &
& Z_sL

‘ All the material constants of the stress-strain relation shown in this

table are called engineering constants. They are the familiar constants
used for conventional materials with subscripts added to denote the
directionality of properties. Many design formulas for structural
elements are written in terms of engineering constants. Thus the use of
engineering constants will often facilitate the use of composites for
structural applications. This concession to the state-of-the-art design
methodology, however, can lead to an unnecessarily complicated design
procedure. In fact, engineering constants for composites can be clumsy
and should be replaced by the components of compliance and stiffness.
A change of notation from engineering constants in Table 1.4 to com-
ponents of compliance in Table 1.5 can be done by direct substitution.

table 1.5
on-axis stress-strain relation for unidirectional
composites in terms of compliance

% g9 (]
& Six Sy
& Syx Sy
& Sss

The relations between these two sets of elastic constants are:

S = — Syy .__y SSS __s
) —
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= = E
or conversely, Oxx = mEy Q,, =mkE,
E = E, = -t ' Q) = my,E, O,y = mv,E, (1.12)
= y - ———
x Sxx S)'y
QSS = ES
S S,
_ Yy
vy = -2 v, = g (1.10) . or conversely
Sxx Yy
E = Q_"’_‘ E = %’
_ 1 x m 4 m
E, = —
Sss ,
From Equation 1.8 we can solve for stress in terms of strain for Vx = 0 Vy = .Q g
which we have the following equations: rY xx
0, = mE,[e,+ v,¢)] ' £y = QO
. -1
0, = mE,[v.e +e,l (1.11) where m = l_Qxy Oy«
Oxx Oy
US = ESES
We have seen three sets of material constants, any of which can
o completely describe the stiffnéss of on-axis unidirectional composites.
where m = [1 — v, v y] The characteristics of each set is summarized in the following:
To eliminate the clumsiness of engineering constants in this stress- ® Stiffness is used to calculate the stress from strain. This is the basic
strain relation, we introduce components of stiffness in Table 1.6. set needed for the stiffness of multidirectional laminates.
le 1.6 ® Compliance is used to calculate the strain from stress. This is the
table 1. set needed for the calculation of engineering constants. This is not

on-axis stress-strain relation for unidirectional

composites in terms of stiffness needed for the stiffness of multidirectional laminates.

® Engineering constants are the carryover from the conventional

' s, A materials. Old designers feel more comfortable working with the
o - P P engineering constants.
: X)
d C:X 0’ As stated earlier, from one set of constants we can readily find the
% 7 Y other sets. They are all equivalent. There is a direct relationship be-
2 Cs tween the stiffness and compliance. One is the inverse of the other. We

will discuss the process of inversion later.

The following relations exist between engineering constants and the
components of stiffness.
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4. symmetry of compliance and stiffness

We wish to show that the coupling components of compliance and
those of stiffness are equal; or, in the terminology of matrix algebra,
that the compliance and stiffness matrices are symmetrjf. Sipce the
only coupling that we have seen thus far is the Poisson coupling, the
symmetry condition states that the Poisson coupling components are
equal, as follows: '

S =8 Qxy:ny (1.14)

We can demonstrate the validity of these equalities from the stored
elastic energy in a body subjected to stress and strain. Let the stored
energy at a point in the orthotropic body be

W=—[o.€, +0,¢, + 0] (1.15)

L
2

Substituting the stress-strain relation in terms of compliance from Table
1.5 into Equation 1.15,

W =

2o |-

We will recover thé stress-strain relation by differentiation of this
energy term: .

on . 1
€, = 30, = 8,50, +5-[Sxy +Syx] o,
(1.17)
oW 1 =
ey = —é-o; ——E[Sxy +Syx] Oy +Syy O'y

Matching the like constants between this set and those in Table 1.5, the
only condition that satisfies both sets is

Sy = Syx (1.18)

[S,x0,2 +(Syy +5,,) 0,0, —&—Syyay2 + 8,021 (1.16).
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By substituting the stiffness relations in Table 1.6 into Equation 1.15
we can also show that ‘ :

Oxy =0y (1.19)

The last two equations state the symmetry or reciprocal conditions of
the Poisson coupling. A similar symmetry condition can be applied to
engineering constants. From Equation 1.19, for example, we have .

VxEy =VyEx (1.20)
or
v FE
X =_* (1.21)
v, E,

With these symmetry conditions, the number of independent constants
for the on-axis, orthotropic unidirectional composite are reduced by
one, from five to: four in Tables 1.4 to 1.6. If additional symmetry
conditions exist, the number of constants can be further reduced.
Specifically, two such cases exist: '

© Square Symmetric Materials )
If the longitudinal and transverse properties are equal, i.e.,

Oxx = @)y
Sex =5, (1.22)
E, =E,

we have a square symmetric material. But because of the addi-
tional relation in Equation 1.22, the number of independent con-
stants are three, one less than the orthotropic material. A cross-ply
laminate is a square symmetric material in the plane of the lam-
inate-Many-woven-fabrics are-also square symmetric.

® [sotropic Materials

We know that isotropic materials have only two independent con-
stants because there is another relation among the three remaining
constants, i.e.,
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Qxx Qx
QSS - 2 £
Sgg = 2 [Sxx —Sxy] (1.23)
. E
G 2(1+vw)

. This relation is derived from the equivalence between the state of

" pure shear and that of equal tension-compression. This equivalence
is only valid for isotropic materials. The derivation of this relation-
ship will be discussed later.

In summary, the stress-strain relations which govern the stiffness of
all materials have the identical form for unidirectional composites as for
conventional materials. There is no additional terms or more complex
relationship. The only difference is the number of independent con-
stants; four for composites versus two for conventional materials. But
there are no conceptual and operational barriers that would make com-
posites intrinsically difficult to work with. In fact, once we understand
composites, we automatically will understand conventional materials as
special cases of composites.

5 stiffness data for typical unidirectional composites

a. Measured engineering constants for a number of unidirectional
composites are listed in Table 1.7. The fiber volume fraction and
specific gravity are also included. These constants are normally derived
directly from simple tests. They are not coefficients of the stress-strain
relations. The unit ply thickness is 125 X 10~ meter.

b. The compliance components for the same composites in Table 1.7
are listed in Table 1.8. These components are computed from Table 1.7
using the formulas in Equation 1.9. The compliance components are
the coefficients of the stress components in the stress-strain relation.
We need this relation to go from stress to strain. ’

- ¢. The stiffness components for the same composites are listed in
Table 1.9. These components are calculated using the formulas in Equa-
tion 1.12. These components are needed to go from strain to stress.
They are also needed to calculate the stiffness of laminated composites.
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table 1.7

engineering constants, fiber volume and specific gravity of typical unidirectional
composites

E, Ey v, E, vr Specific
Type Material GPa GPa GPa gravity
T300/5208  Graphite
/Epoxy 181 10.3 028 7.17 070 16
B (4)/5505  Boron
/Epoxy 204 18.5 0.23 5.59 0.5 2.0
AS/3501  Graphite » '
/Epoxy 138 8.96 0.30 7.1 0.66 1.6
Scotchply - Glass ‘ ‘
1002 /Epoxy 38.6 8.27 026 4.14 045 18
Keviar 49 Aramid '
/Epoxy /Epoxy 76 5.5 034 23 060 146

table 1.8
compliance components of typical unidirectional composites {(TPa)™

Type S, x S,y Sey S,
T300/5208 5.525 97.09 —1.547 139.5
B (4)/5505 4.902 54.05 —1.128 172.7
AS/3501 7.246 111.6 —2.174 140.8
Scotchply 1002 2591 1209 —6.744 241.5
Kevlar 49/Epoxy 13.16 181.8 —‘4.474_ 434.8

S
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table 1.9 If a different material is used, we only need to replace the compliance
 stiffness components of typical unidirectional composites (GPa) components in Equation 1.25 with different data. If the new material is
' Scotchply 1002, we can get the compliance from Table 1.8.
Type m O x ny 0, y Oy
- S,y = 25.91 (TPa)™!
T300/5208 1.0045 181.8 10.34 2.897 7.17
B (4)/5505 1.0048 205.0 18.58 4.275 5.79 S,, =120.9 (TPa)’!
‘ (1.27)
AS/3501 1.0059 138.8 9.013 2.704 7.1 S,, = —6.744 (TPay™
Scotchply 1002 1.0147 39.16 8.392 2.182 4.14
— -1
Kevlar 49/Epoxy  1.0084 76.64 5.546 1.886 2.3 Ses = 2415 (TPa)

With the same applied stress as Equation 1.24, the resulting strain is:

6. sample problems €. = (25.91 X 400 —6.744 X 60) X 107¢ = 9.959 X 1073

a. find strain from stress

m
I

L = 4556 X107 (1.28)

Given stress vector: (400,60,15) MPa (k1-24y)7 .

. = 2415X 15X 107 =3.623 X 107
For compliance of T300/5208 from Table 1.8:

m
Il

Since the glass composite is less stiff than the graphite composite, the

Syx = 5.525 (TPa)™! strain produced by the same applied stress is expected to be larger in
the glass composite. If we compare the strain components by com-

Syy = 97.09 (TPa)! ponents between Equation 1.26 and 1.28, the strain in the glass com-
(1.25) posite is larger in two components, and smaller in one. The moral of the

Sxy = —1.547 (TPa)! story is-that biaxial stress and strain states are complex. Disciplined,
analytic approach is straightforward and is definitely preferred over

S = 139.5 (TPa)™! guesswork. Guessing is not reliable because it is difficult to guess the

5§ result of a matrix multiplication.

Using stress-strain relation in terms of compliance, such as that in Table

15: : b. find stress from strain
e, = (5.525X400— 1.547 X 60) X 1076 This process is the inverse of the previous example. If we are given the
strain in Equation 1.26 and apply it to a T300/5208 composite, the
= 2117 X107 , resulting stress must be calculated by using _
(1.26) ° ® Stress-strain relation in terms of stiffness, such as that in Table
€, = 5.206X 1073 1.6, and :

; e Stiffness components in Table 1.9,
€. = 139.5X 15X 107°% =2.092 X1073
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0., =181.8 GPa

Q,, = 1034 GPa

(1.29)
Oy, = 2.897 GPa
Qs = 7.17 GPa

The resulting stress is:

181.8 X 2.117 + 2.897 X 5.206 = 400 MPa

o, =
o, = 2.897 X2.117 + 10.34 X 5.206 = 60 MPa (1.30)
0‘ =

7.17 X 2.092 = 15 MPa

Note that the original stress of Equation 1.24 has been recovered. If our
composite is Scotchply 1002, we should use the stiffness components
listed in Table 1.9 for this material:

Orx =39.16 GPa
0,, = 8392 GPa

| (1.31)
Oy, = 2182 GPa
Q,;, = 414 GPa

The resulting stress from the applied strain in Equation 1.28 is:

o, = 39.16 X 9.959 + 2.182 X 4.556 = 400 MPa
o, = 2.182 X 9.959 + 8392 X 4.556 = 60 MPa (1.32)
o, = 4.14 X3.623 =15 MPa

Note again that the original stress of Equation 1.24 has been recovered.
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7. conclusions

We have shown that the stiffness of unidirectional composites relative
to the material symmetry axes (axes parallel and transverse to the
fibers) are dictated by four elastic constants. These constants are the
coefficients of the various forms of the stress-strain relations.

When the strains are the independent variables the stress-strain rela-
tions in terms of the components of the stiffness shall be used. When
the stresses are the independent variables the stress-strain relations in
terms of the components of the compliance shall be used. There is a
one-to-one relation that exists between the stiffness and the compli-
ance. We can calculate the components of stiffness from those of the
compliance; or we can just as easily compute the components of com-
pliance from those of the modulus. )

There is another set of elastic constants which we call the engineering
constants. These constants are derived from measurements of simple
tests. These constants are more familiar to the users of composites
because these constants possess exact counterparts in isotropic mate-
rials. Again, of the engineering constants only four are independent.
The symmetry condition that exists for the stiffness and compliance
components is not applicable to the engineering constants. Again, a
one-to-one relation or complete interchangeability exists among the
engineering constants and the components of stiffness and compliance.

The important issue is the functional form of the stress-strain rela-
tion for unidirectional composites. The form is exactly the same as that
for the conventional isotropic materials. It is for this reason we believe
that composite materials are conceptually as simple as conventional
materials.

For composite materials whose stiffness properties are not listed in
this chapter, four independent constants must be obtained either by
direct measurements or from appropriate sources. The process of deter-
mining the stresses and strains remain. If a woven fabric is used instead
of the unidirectional composites comparable constants must be ob-
tained. The fabric is treated as a homogeneous material in the same
fashion as the unidirectional composites are treated. In general, four
constants are needed. If the fabric has a square weave; i.e., the proper-
ties along two orthogonal directions are identical, we will have a square
symmetric material for which there are only three independent
constants.
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Finally, the directionally dependent material property is a unique

feature of composite materials. All four independent material constants

must be known. The stiffness of conventional materials, on the other
hand, can be represented by the Young’s modulus alone because the
~Poisson’s ratio for isotropic materials is approximately 0.3. Further-
more, Poisson’s ratios often appear with unity, such as m in Equation
1.11 and G in Equation 1.23; small variations in Poisson’s ratios often
have insignificant effect. For composite materials, Poisson’s ratios are
not bounded and can have very significant effect. Young’s modulus
alone is not sufficient to describe the stiffness of composite materials.

. homework prol -

"Find the comj

with the follow

What is the effect on the components if the Poisson’s ratio is changed
to 0.25?

. Find the cen

symmetric ma
constants:

E, = Ey = 96 GPa; vy =V, '~=0.03’; E; =17.17 GPa. (1.34)
Find the resulting strain in the aluminum above from an imposed
stress vector (400,60,15) MPa in Equation 1.24. Apply the calculated
strain to the aluminum and see if the original stress vector is
recovered. , :
Repeat Problem (¢) for the ‘square symmetrlc materlal described in
Problem (&). . , :
Use the symmetry condition of Equation 1 20 and mterchange the
two non-zero off-diagonal terms in Table 1.4. Show the condition for
apparent infinite stiffness in the x-direction under biaxial stress is:

v, =ax/oy' o (1.35)

Show the ‘cond‘ition for infinite areal stiffness under plane hydro-
static pressure p is: : t

vy =v, = 1,0, =0, =—p. (1.36)
Find direct expressions for the compliance components in terms of

the modulus components for an orthotropic material. Write down
the modulus components in terms of the compliance components.

. Given two pieces of a unidirectional composite material joined in a

manner shown in Figure 1.14 determine: the deformed shape under
uniaxial stress. Is the deformed shape a, b or ¢? What prm(:1ple is
involved?
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(o) (b) (c)
Figure 1.14 Possible deformed shapes of a 0/90 composite.

h. The maximum stress criterion of a unidirectional composite states
that failure occurs when one of the equalities is met. The data are
those for T300/5208, with the assumption that tensile and com-
pressive strengths are equal.

e <X 0, <Y o, <S

y
(1.37)

< 1500 MPa < 40 MPa < 68 MPa

This criterion appears as a rectangle in stress space in Figure 1.15(a).
It is not drawn to scale. Similarly, the maximum. strain criterion
states

€ <fX €, <fy € <—‘“S:
E, E, E
(1.38)
<8.28X 1073 <3.85X1073 <9.42Xx 1073

This is shown in strain space in Figure 1.15(d). Use the linear ortho-
tropic stress-strain relations to draw to scale: (1) the maximum strain
criterion in stress space, and (2) the maximum stress criterion in
strain space.
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(a) (b)

Figure 1.15 Maximum stress and maximum strain failure criteria.

i. The longitudinal shear stress/shear strain curve for most unidirec-

tional composites is nonlinear. A typical curve (not to scale) is shown
in Figure 1.16. The maximum stress S and strain (€, ) are indicated.
The linear approximation of the maximum strain can be based on the
tangent modulus in Equation (1.38). Show to scale for T300/5208
the maximum strain criterion in stress space similar to Figure
1.17(a), and the maximum stress criterion in strain space similar to
Figure 1.17(b) for both the tangent and the maximum shear strains,
assuming the maximum shear is three times the tangent shear strain.

%

/

S ’
?s "ts é;

Figure 1.16 Longitudinal shear curve.




28 introduction to composite materials \ stiffness of unidirectional composites 29

&4 nomenclature
0; : €$/
| E -= Young’s modulus for isotropic materials
E, = Longitudinal Young’s modulus of unidirectional components
Ey = Transverse Young’s modulus of unidirectional components
5 G = Shear modulus for isotropic materials
s s E, = Longitudinal shear modulus of unidirectional components
m = Dimensionless multiplying constant = [1 — v, v, ]!
X Ei 0y = Stiffness components; i,j = x,y,s
- Y . S,-j = Compliance components; i,j = x,y,s
Ox €x u = Displacement along the x-axis
v = Displacement along the y-axis
7% = Stored elastic energy
€; = Strain components; i,j = x,y,s
o; = Stress components; i,j = x,),s
v = Poisson’s ratio for isotropic materials
v = Longitudinal Poisson’s ratio
(o) b) v, = Transverse Poisson’s ratio .
Sub x = Normal component along the x-axis

Figure 1.17 Maximum stress and maximum strain failure criterion in Sub y = Normal componen't along the y-axis
the 0, — o, plane. Subs = Shear component in the x-y plane




chapter 2
transformation of
stress and strain

The change of stiffness of unidirectional composites as a function of
ply orientation is a unique feature of composites. This change can be
related to the orientational variations of stress and strain. We will derive
the relations that govern these variations; namely, the transformation
equations. There are three formulations for the transformation; viz., the
conventional power functions, the double angle functions, and the
invariant functions. Each formulation has its unique characteristic and
is useful for special purposes. All three formulations are equivalent and
will yield the same answer.

31
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1. background

Up to this point, we have dealt only with the stiffness of unidirectional
composites in their material symmetry axes, as shown in Figure 2.1. In
this reference coordinate system, we call this type of symmetry ortho-
tropic; sce Figure 1.10 for graphic illustration. General orthotropic con-
figuration occurs when the ply orientation is different from 0 or 90
degrees. This is shown in Figure 2.2. We also call the latter configura-
tion the off-axis as distinguished from the on-axis in Figure 2.1.

,AIX Mfé,

Figure 2.1 Material sym-
metry axes of a unidirec-
tional composite. The x-axis
is along the fiber and is in the
longitudinal direction. This
on-axis configuration is
called orthotropic.

Figure 2.2 Off-axis or
generally orthotropic
configuration of a uni-
directional composite.
Counterclockwisc rotation
of the ply-orientation is
positive ; clockwise rotation,
negative.

There are several reasons that we need to know how stress and strain
can be expressed in different orientations of the coordinate axes. As the
angle varies in Figure 2.2, the components of stress and strain will
change following prescribed patterns. This variation is called the trans-
formation equation of stress and strain. The state of stress or strain
remains the same, independent of the coordinate system, but the mag-
nitude of its components change.

In conventional materials, physical properties do not change with
reference coordinates. This class of materials is isotropic. The trans-
formation of 'stress or strain has no special meaning or utility with the
exception of two special orientations; viz., the principal axes where the
shear component vanishes, and the maximum shear orientation which is
45 degrees away from the principal axes. These special orientations are
useful for conventional materials because a number of failure theories
can be applied using the maximum principal stresses or the maximum
shear stresses.
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In composite materials, we need to know the transformation equa-
tions of stress and strain for a number of reasons.

First, the properties of composites are not isotropic. The state of
stress or strain existing relative to the on-axis configuration is important
in determining the stiffness and strength of composite materials. We can
then use the transformation equations, for example, to find the on-axis
stress from the applied stress in an off-axis orientation or vice versa.

Secondly, transformation equations are needed to determine the
principal stresses or strains. The same transformation equations also
define the invariants of stress and strain. The concepts of principal
axes and invariants are fundamental for the understanding of composite
materials. The same concepts can be extended to those for stiffness and
strength. They will be explained later.

Finally, transformation equations for stress and strain, together with
the on-axis stress-strain relations of Chapter 1, can be used to determine
the off-axis compliance and modulus of unidirectional composites. The
sequence of operations is illustrated in Figure 2.3 for the compliance
and described as follows:

® The originally applied stress to an off-axis composite is shown in
(a), expressed in components 1,2,6.
® [f we apply stress transformation to the components of () in the
1-2 system, we will get (), the same state of stress but expressed
in the different components of the on-axis, x-y system; i.e., in
components x,y,s. This is a positive stress transformation.
® Since we know the relations between the on-axis stress and strain
from Table 1.5, we can determine the induced strain in the
on-axis, x-y system, which is shown in (c).
® We can then apply inverse strain transformation to get the strain
components in the off-axis, 1-2 system from the on-axis, x-y
systemnyice.; front (¢) to (d) in Figure 2.3. This is a negative strain
transformation. Then we have the induced strain in (d) as the
result of the applied stress in (@), both of which are in the off-axis,
1-2 system. B
We can go from (a) to (d) directly if we know the off-axis stress-
strain relation. This can be derived by merging the three steps in this
figure into one.
If the imposed strain is given in Figure 2.3(a) instead of the stress,
the induced off-axis stress can ‘be determined by a very analogous
method. The off-axis modulus of a unidirectional composite can then
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Z] o & &
Y g '(,?/;ax NS o e
== & % 122 I
¢ N \ l
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(a) —= (6) s7eiyss (¢) —— (d)
OFF - Axis On-Axis """ on-Axis OFff-Axis
Stress Stress Strain Strain
5 I
hj=1,2,6 -

Figure 2.3 Determination of the off-axis compliance:

From (a) to (b): use positive stress transformation.

From (b) to (¢): use the on-axis stress-strain relation in
compliance.

From (¢) to (d): use negative strain transformation.

be derived from this process. The sequence of operations is illustrated
in Figure 2.4.

® From off-axis strain to on-axis strain, use positive strain trans-
formation. This is the operation from (@) to ().

® From on-axis strain to on-axis stress, use the on-axis stress-strain
relation in modulus, as in Table 1.6. This is the operation from ()
to (¢).

® From on-axis stress to off-axis stress, use negative stress transfor-
mation. This operation is from (c¢) to (d).

Alternatively, we can go from (a) to (d) directly if we know the
off-axis modulus.

The scope of this chapter is to show stress and strain transformation.
The formulas of the transformation are simple and easy to use, but the
most critical part of the operation is the sign convention. As we have
repeatedly mentioned, signs are critical for the study of composites.
Such emphasis is not called for in the case of conventional materials
because their behavior is often insensitive to signs and directions.

The notations associated with coordinate transformation are arbi-
trary. The components of the original versus the transformed, the old
versus the new, the 1-2 versus the x-y systems, or the on-axis versus the
off-axis are based on a matter of judgment, and certainly vary from
author to author and from situation to situation. Only the definitions
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Figure 2.4 Determination of the off-axis modulus:
From (a) to (b): use positive strain transformation.
From () to (c): use the on-axis stress-strain relations in
modulus.
From (¢) to (d): use negative or inverse stress transformation.

of the on-axis and the off-axis are normally fixed. The key issue is the
initial definition such as that shown in Figure 2.2, where the reference
coordinates and the ply orientation are illustrated. This choice is made
for convenience because most transformations for the stress and strain
in_composite materials_go_from the off-axis to the on-axis orientation.
But these are exceptions, such as the negative or inverse transformation
between step (¢) and step (d) in Figure 2.3 and 2.4.

2. transformation of stress

Now we would like to derive the relations between two sets of stress
components; one set expressed in the 1-2 system, and the other in the
x-y system. The latter is rotated from the former by a positive angle as
shown in Figure 2.2 and repeated in Figure 2.5(a). In Figure 2.5(b) and
(c), the two sets of stress components, one with numerical subscripts,
the other with letter subscripts, are also shown. The arrows indicate the
direction of the positive component, following the sign convention in
Figure 1.6.

The transformation of stress can be derived from the balance of
forces. Consider a free-body diagram shown in Figure 2.6(a) which is a
wedge slicing across fibers in a typical infinitesimal unit area like that in
Figure 2.5(b). The sides of this wedge have the following lengths
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® Balance of horizontal (along the 1-axis) forces yields:

2
% Ty
y\T 4 \N%E
X a -~ x
5 e o X ‘ ma, —no, = mao, + no (2.2)
Z *_f_.’ ‘ x s 1 6 :
//,2 / 4 /\/\
{ ® Balance of vertical (along the 2-axis) forces yields:
(a) (6) el
no, +mo, =no, + mog (2.3)
Figure 2.5 Stress transformation: changes in stress ‘
;:ompfonentts_ due to coordinate rotation or Keeping in mind that the original 1-2 components are given, and we are
ranstormation. . .
(a) Relation between the 1-2 and x-y systems. looking for the. nevY Xx-) components, v\{e can find the unknown com-
Counterclockwise rotation is positive. - , _ ponents by solving simultaneously Equations 2.2 and 2.3 as follows:
(b) The off-axis or old stress components, with )
numerical subscripts, . = - 0,= m2ol + n202 + 2mno, (2.4)

(¢) The on-axis or new stress components, with

letter subscripts. e e e - - I e
All arrows for the components are pointing in a . g, = —mMno, + mno, + [m2 —n? loe (2.5)
positive direction. '
It is assumed here that the off-axis stress components are normally
given and the on-axis components are desired. This is usually the case

%

n I when we study composite materials. It is important to know that Equa-
—’Ias' tions 2.4 and 2.5 are applicable independent of material properties. The
Am — a description of the on-axis and off-axis is made for sake of convenience
~*¢ and is not intended to restrict the transformation equations to a

a o specific material.
(o) (b) . We can now repeat the process by slicing a wedge parallel to fibers in
the unit area as in Figure 2.7. On this plane the normal stress com-
Figure 2.6 Free-body diagram for the ponent is acting transversely to the fibers. The free body diagram for
balance of stress components. The com- this wedge is shown in Figure 2.7(b), from which the following rela-'

ponents of the on-axis, x-y coordinates
can be expressed in terms of those of the
off-axis, 1-2 coordinates. All stress com-
ponents shown are derived from Figure
2.5(b) and (c).

tions can be established:

® Balance of horizontal forces yields:

ne, — mo, = neé,; — no
relative to unity hypotenuse; also shown in Figure 2.6(a): Y s ! 6 (2.6)

® Balance of vertical forces yields:
m =cosd, n=sind 2.1) ! yi

mag, + = —no

The forces exerted on the sides of this triangular free body, shown Oy T 19y = MO 6 2.7)
only schematically in Figure 2.6(b), are the products of the stress
components multiplied by the appropriate lengths of the sides.
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Figure 2.7 Free-body diagram for the balance
of stress components. This is the same as Figure
2.6 except the new plane is sliced along the fibers.
Positive components are derived from Figure 2.5()
and (c).

If we solve the last two equations simultaneously, we get

0, = n*0, +m?o, — 2mno, - (2.8)

o, =—mno, +mno, + [m? —n?]o, (2.9)

§
Note that the shear stress expressed in Equation 2.9 is the same as that
in Equation 2.5 as it should be. Thus, the three equations for stress

~transformation are Equations 2.4, 2.8 and 2.9. These equations can be
packaged in a matrix multiplication table as follows:

table 2.1
stress transformation equations in
power functions

g % %
o m? n? 2mn
g n? m? -2mn
oS —-mn mn m2-n?

m=cos 8, n=sinb

The transformation equations above are expressed in terms of second
power of sines and cosines. We can rewrite these equations using double
angle trigonometric identities as follows:
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m? = cos?@ = —+ —cos20

2| —
ST

n? = sin?0 = —%00329
(2.10)

2mn = sin26
m? —n? = cos20

When we substitute these identities into the equations in Table 2.1, we
get

o, = %[01 + 0,1 «1-%[01 —0,] cos20 + 048in20
g, = %[0‘ +0,] ~—%[a1 —0,]c0820 —agsin28  (2.11)
g, = ——;— o, — 0, ]1sin20 + g4c0s20

Introducing a notation commonly used in photoelasticity, we have

or (2.12)

where super bars refer to the on-axis orientation. We can now express
the stress transformation equations in terms of double angles and the
notation in Equation 2.12. This new formulation is shown in a matrix
multiplication table as follows:
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table 2.2
stress transformation in double angle
function — |
4 q r
o / cos28 sin28
g / —c0s28 ~-sin26
o5 -sin28 cos28

& is positive in counter-clockwise
rofation

There is an alternative arrangement for Table 2.2 where the column
headings and the trigonometric functions are interchanged. This
arrangement is useful for certain ply orientation such as 45 degrees, in
which case the column with the cosine function vanishes.

table 2.3

stress transformation in double angle
functions — Il

/ cos28 sinlé
[~ p q r
g P -q -r
% r -9

Either table can be used. The common feature is the first column,
where the influence of the angle of rotation does not exist. The con-
stant p is called an invariant of this coordinate transformation. If we
add the first two rows of the tables above, we get

2p=0,+0,=2p=0, +0, (2.13)

Thus the sum of the two normal stress components remain constant,
independent of the angle of rotation or ply orientation. We call this
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invariant the first-order invariant for stress transformation;i.e.,
I=p=p (2.14)

There is a second-order invariant that we can show as follows:

From Equation 2.12

q* +7r? %[a,‘—oy]z+os2

From Table 2.3
= q%cos?20 + 2grsin20cos20 + r?sin?26
+ r2cos? 20 — 2qrsin26cos26 + g?sin?260 (2.15)
= g*+r

This is another invariant because the quantity remains the same for any
value of angle or ply orientation. We label this second-order invariant as

R2=g2+7r2 =42 +r? (2.16)

where R is the radius of the Mohr’s circle for stress transformation. The
geometric relationship of Equation 2.16 is shown in Figure 2.8. Also
shown in this figure are the phase angle and the following trigonometric
relations:

q = Rcos26,
r = Rsin20, 2.17)
6, = %tgn“ Er=-!2-sin'l R%=%cos" %

Thus the three stress components that characterize the state of plane
stress can be represented by at least three sets of variables for a given
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0; ff ‘ r
MOHR'S CIRCLE
r=Rsin2é,
o8, g, 9,
| Yo =Reoszg, q
I

Figure 2.8 Geometric relations of second-order stress
invariant R and Mohr’s circle. The location of the center
is specified by the first invariant /.

coordinate system;i.e., for a given angle of orientation, say, 0.

® First set: Stress components 1,2,6.

® Second set: p, g, r in accordance with Equation 2.12.

® Third set: Invariates / and R and the phase angle, defined in
Equations 2.14, 2.16 and 2.17, respectively.

Similarly, the stress transformation can be formulated in terms of each
of the scts above. We have done the first two; the third set can be used
to derive the transformation equations by substituting Equations 2.14,
2.16 and 2.17 into the appropriate column headings in Table 2.2, the
transformation in terms-of p, g, r.

6, = I+ Rcos20,co0s26 + Rsin20 ,sin26
= [+ Rcos2 [6—0,]
o, = I—Rcos2[0—0,] (2.18)

o, = =—Rcos20,sin20 + Rsin20 cos20

= —Rsin2 (60, |
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where [ = -;—[a1 +0,]
R = Jg?+r2=+/=1l0o, —0,]1% + 042 (2.19)
6, = —cos! 4 _lgm LaLlg 2
R 2 R 2 q

This invariant formulation of the transformation equations can be
shown in a matrix multiplication table as follows:

table 2.4 ‘
stress transformation in invariant functions
7 R
2 /- cos2(8-8,)
g / -cos2(8-6,)
- -sin2(6-6,)

We have seen that transformation equations can be written in different
sets of functions. There are advantages and disadvantages associated
with each set. From the standpoint of numerical calculation, the in-
variant functions in Table 2.4 may be the easiest because there are only
two columns in this table, instead of three columns as in Tables
2.1-2.3. The Mohr’s circle representation is also based on the invariant
functions. But the direction of rotation, the magnitude and the sign of
the phase angle can be troublesome. Care must be exercised in applying
the last line of Equation 2.17 or 2.19 to avoid a 180 degree out of
phase mistake.* Inverse trigonometric functions are not single-valued;
they repeat themselves at fixed intervals. The double angle functions of
the stress transformation in Tables 2.2 and 2.3 are better in the sense
that the- signs are correctly built in. The classical power functions
formulation in Table 2.1 appears most frequently in current textbooks.
This formulation is most convenient to use when one or two of the
stress components are zero.

*The same care is required for the conversion of rectangular to polar coordinates.

e R ke s s
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3. numerical examples of stress transformation

Problem: Given stress in the 1-2 system
0;=(9,3,4) (2.20)

Find stress components in the x-y system for 8§ = 45 degrees. The
two reference coordinates are shown in Figure 2.9 (same as Figure 2.5).

2
%
y\ T /‘" ?"06‘- 'S}j' ai,a,;
Wl 2 o
/ ‘—‘ — 11
| )
(a) ) — o o)

Figure 2.9 Stress transformation: changes in stress
components due to.coordinate transformation.

Solution:

(1) From the power function transformation in Table 2.1.

cosf = sinf =—— (2.21)
V2
o, =%(9+3+2x4)=10
_ 1 _ _
6, =2(O+3-2x4)=2
6, =L(—9+3+0)=-3
> (2.22)
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(2) From the double angle function transformation in Table 2.3:

cos20 = 0,sin20 =1 (2.23)

p = %(9+3)=6

q = %(9—3)=3 (2.24)
r = 4
Then,
o, = 6+4=10
0, = 6—4=2 (2.25)
. = —3

(3) From the definition of invariants in Equation 2.19:

I = p=6 (2.26)
R = Vg>+r2=v32+42=5 (2.27)
9, = é— tan™! g—= 26.56 degree
= 1.4 _
or = Esm -5— = 26.56 degree (2.28)
or = —l-cos'l 3- 26.56 degree
2 5
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From the invariant function transformation in Table 2.4 for 8 = 45
degrees, we have

o, = 6+ 5c0s2(45—26.56) =10
0, = 6 — 5c0s2(45 — 26.56) =2 (2.29)
o, = —5sin2(45—26.56) =—3

As expected all three formulations yield the same answer.

By virtue of symmetry, four combinations of stress components are
closely related, each corresponding to a phase angle. This is shown in
the Mohr’s circle in Figure 2.10.

t X
(2)
- +
v 26, g (3,9,4) (9,3,4)
N 24//)
(/,/,0)
l’ - q >0, , 03
9 (9) N
26, (10,2,53)
- o-:
e (3,9,-4) (,3,-4)
(a) ’ (b)

Figure 2.10 Four possible combinations of components of stress. For a given
Mohr’s circle (or a state of stress) the magnitude and sign of the stress
components depend on the signs of g and r in Equation 2.24. Each combina-
tion is associated with a phase angle. The relations between the four phase
angles are shown in this figure. The components for each phase angle are
also shown.

Care must be exercised to distinguish among these combinations.
They are repeated here for emphasis and shown in Figure 2.10(d).

oM = 26.56, 0; = (9,3,4)
0 = 63.44, 0; =(3,9,4)

~ (2.30)
9(()3) = —63.44, g; = (3,9,—4)

04 = —26.56, 0; = (9,3,~4)
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Note that the first phase angle is the given orientation for this present
state of stress. Note relationships between phase angles; e.g.,

B + 6D = 90

63 + 6@ = —90
(2.31)
o) =0 ‘

9 gz) = —f 53)

In spite of the multivalued phase angles for the invariant formulation
of the transformation, the phase angle has one important feature. When
the angle of rotation 0 is equal to a phase angle, say 26.56 degrees from
Equation 2.30, we have from Equation 2.29:

01=6+5=11
0, =6—5= 1 (2.32)
06=0

This combination of stress components are also shown in Figure
2.10(b). This orientation is called the principal direction. In this
orientation, the shear stress is zero, and the normal stress com-
ponents reach maximum and minimum values. They can be determined
immediately from the two invariants:

Op = Opy = I+R

(2.33)

Op = Omin = I—R

where stress components are the principal stress components. See
Figure 2.11 for graphical illustration of various invariant quantities.
Thus, the principal direction is derived from

6—6,=0 (2.34)
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Figure 2.11 Principal stress components. They are
the maximum or minimum values in the Mohr’s

circle.

There is another important orientation; i.e., 45 degrees from the prin-
cipal direction, or when

6—6,=45 (2.395)
At this angle, we have
g,= I = 6
o, = I = 6 ‘ (2.36)
g¢ =—R =-5

Here, both normal stress components are equal to the first invariant;
the shear stress component reaches its minimum value. The latter would
have been the maximum shear stress if —45 degree is used in Equation
2.35.

As a final emphasis on the importance of the sign of angles, Figure
2.12 shows the consequence of a sign error. A positive transformation
from the 1-2 axes will result in the material symmetry axes, designated
1*-2" axes. A sign error will result in the 17-2” axes which are 20 orienta-
tion away from the correct answer.
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Figure 2.12 Positive and negative
angles of rotation. Guesswork is
not good enough for composites.
Keep track of the signs.

4. transformation of strain

Strain transformation is as importanf as stress transformation. An iden-
tical figure to Figure 2.5 can be drawn for the strain components. This
is done in Figure 2.13.

2
N Y s
LR G 2N o %
7z +8 77 | K
/ ‘—i — /\/\
(}7/ ——-——L (c)
(a) T

" Figure 2.13 Strain transformation. Changes in strain
components due-to coordinate rotation or
transformation.

(a) Relation between the 1-2 and x-y systems.
Counterclockwise rotation is positive.

(b) The off-axis strain components, with numerical
subscripts.

(¢) The on-axis strain components, with letter
subscripts.

All arrows for the components are pointing in a

positive direction.

Like the definition of strain itself, strain transformation is purely geo-
metric. and involves no material property or balance of forces. Using the
notation shown in Figure 2.13, the off-axes orientation is the 1-2
system, and the on-axis, the x-y system. We will now derive the strain
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transformation relations from the strain-displacement relations shown
in Equation 1.1 and 1.4 and repeated as follows:

_
* ox

e, = g"; (237)

e = ov au'

s ox dy

Since both displacements « and v and coordinates x and y are vectors,
and are directionally dependent quantities, we only need to find the

relationship between the primed and the unprimed components of a

vector, shown in Figure 2.14(a) and (b), respectively,

x = mx'+ny
(2.38)
y =—nx'" +my'
conversely,
x'=mx —ny
(2.39)

nx + my

<
Il

where, as before,

S m=cosf, n=sinb

From Equation 2.39, we can get the following by partial differ-
entiation: ’

ox _ o, 09X __, al:,z,a_J’_:m (2.40)

The relations between displacements in the primed and unprimed
coordinates are identical to those in Equations 2.38 and 2.39 because
all quantities. are vectors. We can simply write the following by re-
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(a) (b)

Figure 2.14 Coordinate systems between the primed or
numbered and unprimed axes.
(a) To go from primed to unprimed, 0 is positive.
(b) To go from unprimed to primed, 0 is negative.

placing x, y, x', y', by u, v, u’, v, respectively:

u= mu+n
T : (2.41)
v =—nu'" +my'
Conversely,
u'= mu—nv
(2.42)

vV =nu + my

Now we are ready to derive the strain transformation equations. From
Equation 2.37 '

e, =4 (2.43)

By chain differentiation

_aub_x_’+aia_y’

©x T ax'ox @ 3y ox (2.44)



52 introduction to composite materials

From Equation 2.40 and 2.41

ou’ ov’ ou ]
o ] ]
= m?e, +nle, + mneg (2.45)
where €, = € = g—u,—
‘ X
' aV'
€, = €, = — .46
2 y ayi (24 )
/ au av
€6 = € =
é s ' ar

Here primes are added to all the variables in the definitions of strains in
Equation 2.37. We can do this because the relationship is invariant; i.e.,
the relationship does not change from coordinates to coordinates, and
is valid for all coordinate systems. Note that the strain transformation
in Equation 2.45 is very similar to the stress transformation in Equation
2.4 except the factor 2 is missing in the shear term. This difference
comes about from the use of engineering shear strain as shown in Table
1.3 and Equation 1.4. ‘

By an identical process as that used in the derivation of Equation
2.45, we can show

€, = ne; +mle, —mneg 247

€ —2mne, + 2mne, + [m?—n?]eg (2.48)

s

This is summarized in a matrix multiplication table as follows:

table 2.5
strain transformation equations in power
functions
€, A &5
€ m? né mn
3% né m? -mn
€s =-2mn 2mn m2-n2
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We can express the transformation relations in terms of double angle
and invariant functions as we did for the stress transformation. Com- -
parable to Tables 2.2 and 2.3 for stress transformation, we can show
strain transformation in double angle functions in Tables 2.6 and 2.7,
respectively.

table 2.6
.__strain transformatlon in double angle
function — 1~

P q r
& / c0s28 sin28.
& / -cos28 -sin28
& =2sin28 2cos28
table 2.7

strain transformation in double angle
functions — |1

/ cos28 sin26
& q r
& -9 -r
& er -9
, 1 1 1
where p =3[el +e,1, g -—-5[61 — €51, —566 (2.49)

Note that the definition of r is different from that for the stress
transformation in Equation 2.12. The use of engineering shear strain is
responsible for the difference.

The invariant function comparable to Table 2.4 for the stress trans-
formation can be derived in a similar fashion and the results are listed in
a matrix multiplication table as follows:
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table 2.8
strain transformation in invariant functions
7/ r
& / cos2(8-65)
& / -c0s2(6-6,)
& -2sin2(8-8, )
. !
where: [ = [, ~§[e, + €, ]
1
R = R_=q¢q*+r =\/Z[€1—62]2*+%662 (2.50)
1l 49 _1 . r_1 ;7
g, = —=cos' —=-—sin' —=—tan  —
0 2 R 2 R 2 q

The advantages and disadvantages of each formulation for the strain
transformation are similar to those for the stress transformation. The
double angle formulation appears to provide the best compromise and
is recommended for general usage. This will be our choice for the
balance of this book.

~ 5. numerical examples of strain transformation

a Problem: Given a state of strain in the 1-2 system
€ =1(9,3,4) X 1073 2.51)

Find a transformed strain for 6 equal to 45 degrees. See Figure 2.15.

Solution:  From Table 2.7, cos26 = 0, sin26 = 1
_1 _ -3
P —3(94—3)—6)( 10
q = %(9»— 3)=3X 107 (2.52)

=2X1073

~
Il
SR N
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; Then
€ = 6+2=8Xx1073
6—2=4X107 (2.53)

—2X3=—-6X1073

m
i

Note that the transformed strain is quite different from the trans-
formed stress of (10,2,—3) from Equation 2.25. The factor of 2 in the
engineering shear strain is responsible for this dramatic difference.

2
€2 15
}'\ T /{;( ""66‘ . \ﬁ \é;/, €
V —~L-.' - —!
é / J P\
| N
7—+
(a) (b) e ()
%

Figure 2.15 Strain transformation. To go from (b) to
(¢) is a positive transformation when the angle of
rotation is positive, as in Problem 4. The negative or
inverse transformation in Problem b is in effect when
the angle is negative, (This figure is the same as
Figure 2.13.)

b. Problem: Try inverse transformation for strain in Equation 2.53

€ =(8,4,—6) X 1073 (2.54)
Find strain at —45 degree rotation.
Solution:  From Table 2.7, cos268 = 0, sin20 = —1
5= %(8+4)=6X 1073
g = %(8—4)=2X 1073 (2.55)
F=-8_-_3x10"
2
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Then
€, = 6+3=9X 1073

6—3=3X%X1073 (2.56)

i

€,

2X2=4X1073

i

€6

Note that the original strain in Equation 2.51 is recovered.

6. graphic interpretations of stress-strain relations

The stress-strain relations in Chapter 1 used components of stress and
strain as the variables. If we use their linear combinations p,q,r, as
defined by Equations 2.12 and 2.49, we can write the equivalent stress-
strain refations for an on-axis, orthotropic material as follows:

table 2.9
equivalent on-axis stress-strain relation in terms
of compliance

o 9o 7

Y}

/ /
25045, +25y) #(Su=S,y)

/ ¥4
% |Z0%a-Sy)  Z(SutSyESy)

- /
% 75ss
table 2.10
equivalent on-axis stress-strain relation in terms
of modulus
Pe % %

Pr | £0ut0yy*20y) +000,y/
/ /
Yo |20 Qy)  7(0u*0,, 20,/

lor 2055
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If the material is isotropic, we have additional relations among the
components of compliance and modulus, such as those in Equation
1.23, Tables 2.9 and 2.10 become:

table 2.11 _
equivalent stress-strain relation of isotropic
materials
Py 9o >
A Sxx* Sxy
% Sxx = Sxy
/e Sxx = sxy
pl' qé' ,6‘
Ay Oxx * Oxy
9 | Oxx = Oxy
> Oxx — Oxy

All off-diagonal terms vanish; all the stress-strain combinations are un-
coupled. The Mohr’s circle for stress and strain are related as follows:

Similarly

P

R

= q3+r2=(S

= [e =(Sxx +Sxy)la

€ xx_Sxy

= 1, =Qxx + Oxy)le

= (Qxx - Qxy )Re

R,

(2.57)

(2.58)
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The last relation is the phase angle which remains the same as we go
from the stress to strain space or vice versa. The principal axes of stress
and strain are coincident. The two Mohr’s circles, shown in Figure 2.16,
are related by two independent constants or scale factors. We expect
this in isotropic materials.

(2
$s b5 /2

\'?/ 6:: fy

Figure 2.16 Graphic representation of stress-strain relation of an iso-
tropic material. The phase angle remains the same. The location and
size of the Mohr’s circles are different. :

If our material is square-symmetric, the equivalent stress-strain rela-
tions must be modified because the relation of Equation 1.23 is no

- longer valid. The new stress-strain relations are shown as follows:

table 2.12

equivalent on-axis stress-strain relations for
square-symmetric materials

P 9o 7
% Swx tSny
%e Sxx ;SXy
g 7 Sss

AN
Qi
aNnl
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In place of the relations in Equations 2.57 and 2.58, we have:

I, = [Sxx +Sxy]Io

. 1 SSS - 2
(Sex =S, 1 /72 [2 S ]

1 - 1 Sss ¢
o = Lignt | LT
e — [2S;x--sxy

Shav|

Similarly
Iy = [Qux +0Qxylle

R [ 0..1 \/‘2 + [ 20, —°? 2.60)
= —_— —— e | .
RN e i

6, = 1 tant _—————2st ZE]
2 Oy x —Qxy d

Thus, the simple scaling applies to the location of the Mohr’s circle
only. The radii of the Mohr’s circle depend on the specific material
constants. All three independent constants are involved. Explicit rela-
tion between the two radii of the Mohr’s circles does not exist. We can
recover the isotropic relations in Equations 2.57 and 2.58 if the relation
in Equation 1.23 is invoked. The phase angle also changes as we go
from one Mohr’s circle to another. The principal axes of stress will not
be coincident with those of strain.

If we consider an orthotropic material, the relations in Tables 2.9
and 2.10 show that the location of the Mohr’s circle as specified by the
first invariant is now coupled with other components of stress (g) and
other components of the compliance. The location of the circle in the
Mohr’s strain space, for example, depends on the specific material and
the stress combinations of p and g. There is one special case where the
principal axes of stress and strain coincide for orthotropic or square
symmetric material. This occurs when the material symmetry axes or
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the on-axis orientations coincide with the principal stress or strain axes.

If we start with zero stress and gradually increase all three com-
ponents of stress by the same proportion, this is called proportional
loading. The unit vector of stress remains constant. The lines of loading
can be shown as a straight line in the Mohr’s circle space. These loading
paths are added to the circles in Figure 2.16 and shown.in Figure 2.17.
For nonisotropic material, the phase angles will be different. The prin-
cipal axes will therefore be different between the stress and strain. The
concept of loading path is important to the design and sizing of com-
posite materials. For structures, multiple loading conditions often exist.
Multiple loading paths and paths other than proportional loading are all
possible. Graphic illustrations in Figure 2.17 can increase understanding
of the basic concept in design.

PROPORTIONAL
& /2 ORTHOTROPIC
Yoy STRESS LOADING i STRAIN PATH
rd
7
N \X /SOTROPIC
vl ; o /l Rt
~\ .7 X, %y €y

Figure 2.17 Loading paths of stress and strains in Mohr’s circle space.
The strain paths are dependent on elastic moduli of the material.

7. conclusions

Stresses, strains and their transformation properties are familiar con-

cepts. For composite materials added considerations must be given. The

direction of rotation or the sign of the ply orientation must be observed
faithfully. While guesswork is often harmless for the conventional
material because material behavior is often insensitive to the direction
of rotation, we must develop strict rules in keeping track of the sign of
the angles in composite materials.

The notations which we have used in this chapter is arbitrary to the
extent that a number of systems could be followed. It is important to
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distinguish the reference coordinate axes from the material symmetry
axes, the new from the old coordinate axes, etc. There is no one uni-
versally acceptable system of notation.

The transformation of stresses is independent of materials. The rela-
tions we used in this chapter are from the off-axis orientation to the
on-axis orientation. They are most frequently encountered working
with composite materials. The transformation of strain is purely geo-
metric. No material properties are involved. This should not be con-
fused by the fact that the resulting strain from an applied stress does
depend . on the type of material. A stiffer material will result in less
strain for the same applied stress. The strain so produced is dictated by
the stress-strain relation and the magnitude of the elastic constants. But
the transformation of strain is purely geometric for a given state of
strain. In the next chapter the transformation of stress and strain will
provide the basis for the derivation of the transformation of the
modulus and compliance of unidirectional composites.

The concepts of the principal directions of stress and strain are
important to composite materials. Like the sign of ply orientation, the
sign of the orientation of the principal axes must be treated with care.
The notation and definition such as that in Figures 2.2, 2.10, et al.
must be kept in mind in order to avoid bad errors.
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8. homework problems

a. Express stress transformation from the p-g-r to the p’-q'-r', where the
primed quantities are the linear combinations of the stress com-
ponents in the new, transformed axes.

table 2.13
transformation of stress
Py 9 I
“ /.
9. cos28 sin268
rt . -sin28 cos26

What is the relation between this table and the coordinate transfor-
mation in Equation 2.38 or a rigid body rotation in the g-r space?
Show this in a figure and compare it with Figure 2.14.

b. Express strain transformation in terms of the linear combinations of

the strain components, analogous to the stress transformation in
Problem a. Why are the coefficients identical?

table 2.14
transformation of strain
Pe 9 %
Al /
q! cos28 sin28
rl -sin26 cos28

c. Simple states of stress are those with only one nonzero stress com-
ponent such as

2) o0,=b0,=05=0 (2.61)
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Show these states in solid dots in the Mohr’s circle space as in Figure
2.11. If each of the applied stress above is equal to 100 MPa, find the
tesulting strain components and show the strain to scale in the
Mohr’s circle space for aluminum, T300/5208 cross ply and uni-
directional (isotropic, square-symmetric and orthotropic materials,
respectively, as listed in the Homework Problems in Chapter 1).

. Biaxial states of stress are those with two nonzero components which

also become the principal stresses if the two normal stress com-
ponents are not zero. There are four most common biaxial states:

1) g, = 0, = P, q6 =0
2) 0,= 0,=—P,ags=0
‘ — , (2.62)
3) g, =—0,= Q,04=0

4) 0, =—0,="0,06=0

Show these states in solid dots in the Mohr’s circle space. If each of
the applied stress is equal to 100 MPa, show the resulting states of
strain for the same materials in Problem c. »

. Show the relation between the following two states of stress:

0¢ = Q,and
(2.63)
0y, =0, =Q
How can this be used to establish relations between engineering con-
stants for isotropic material as in Equation 1.23? Can this be used for
nonisotropic materials? -
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nomenclature

~

€1, u

First order invariant of stress or strain, depending on the
subscript

cosf, sinf

Linear combinations of stress or strain components

Special linear combinations of stress or strain components
with reference to the material symmetry axes

Components of modulus; i,j = x,y,s or 1,2,6

A second-order invariant of stress or strain; it is the radius of
the Mohr’s circle

Components of compliance, i,j = x,,s or-1,2,6

Positive, and negative or inverse transformation of stress or
strain, depending on the subscript. The sign corresponds to
that of the ply orientation

New or transformed coordinate axes, usually refer to the
on-axis orientation

Reference coordinate axes, usually refer to some off-axis
orientation

Displacements along the x and y axes

Displacements along the 1 and 2 axes

Stress components in the material symmetry axes, i = x,y,s;
or in the 1-2 reference axes, i = 1,2,6

= Principal stress components

Strain components in the material symmetry axes, i = x,y,s;
or in the 1-2 reference axes, i = 1,2,6

Principal strain components

Angle  of ply orientation; counterclockwise rotation is
positive

Phase angle for stress or strain transformation in the invariant
formulation; it is the orientation of the principal axes mea-
sured in the reference axes 1-2

chapter 3
off-axis stiffness of
unidirectional composites

The stiffness of unidirectional composites with off-axis ply orientation
is important because composite laminates are normally made of off-axis
in addition to on-axis plies. We must know how to determine the con-
tribution to the laminate stiffness by each ply or ply group. We will
need the transformation of stiffness and compliance to determine the
off-axis stiffness. Like those for stress and strain, the transformation
‘relations of stiffness and compliance can be formulated in terms of the
power functions, the multiple angle functions and the invariants. Exam-
ples of a specific graphite-epoxy composite are used to illustrate the
off-axis stiffness of unidirectional composites.
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v1. off-axis stiffness modulus

As we have shown in Figure 2.4 and repeated here in Figure 3.1, the
off-axis stiffness can be determined in three steps: the off-axis to on-
axis strain transformation, the on-axis stress-strain relations, and the
inverse or the on-axis to off-axis stress transformation. This process was
initiated by a given strain in Figure 3.1(a) and led us eventually to the
induced stress in Figure 3.1(d). The off-axis compliance can be similarly
derived in three steps, as shown in Figure 2.3. The purpose here is to
derive the off-axis stiffness and the off-axis stress-strain relation for an
arbitrary angle of orientation. Then we can go directly from () to (d)
in Figure 3.1 in one step. o ’

€ P o, Jor
T (4 2
rf’ g Sy Lra‘;
- y
- — —_—l
' / l@ - \/\ ‘—‘ 7
'
e i o
(a) (6) s (€ (a)
Off - Axis On - Axis” """ On- Axis Off-Axis
Stram Sf(a/n Stress Stress
l o !
02,6

Figure 3.1 Determination of the off-axis stiffness:
From (a) to (b): use positive strain transformation.
From (&) to (c): use the on-axis stress-strain relations in stiffness.
From (c) to (d): use negative or inverse stress transformation.
We can go from (e) to (d) directly if we merge these three steps
into one. This is the same as Figure 2.4.

We will follow these steps in Figure 3.1.

® To go from (@) to (b), we need the strain transformation listed in
Table 2.5, repeated here as follows:

e, = m?e, +n%e;, +mneg
€, = n%e, +m’e, —mneg (3.1

€, = —2mne, + 2mne, + [m?*—n?)eg
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® To go from (b) to (¢) in Figure 3.1, we need'the, on-axis ortho-
tropic stress-strain relation in modulus in Table 1.6 which, when
combined with the results in Equation 3.1, produces:

o, = Q,.lm?e, +ne; +mneg]

+Q,,[n*e; + m?e, —mneg )

3.2)
- [szxx+n2 xy]el +[n2Qxx+m2Qxy]e2
_ HImnQy, —mnQ,, e
Similarly,
o, = [m*Q,, +n2Q,,le, +(n?Q,, +m?Q,,le, :
3.3)
+ [mnQ,, —mnQ, e
o, = —2mnQ e, +2mnQ e, + [m*—n?]Q, e, (3.4)

® To go from (¢) to (d) in Figure 3.1, we need to modify the stress
transformation as listed in Table 2.1. The angle of rotation is now
negative. The numeric and letter subscripts are interchanged. The
letter subscripts now refer to the old (before transformation), and
the numeric subscripts, the new (after transformation).

0, =m?ag, +n*o, — 2mna : (3.5)

=m? [(m2Q,, +n?Q, )6, +(n*0y, + m?Q, )€,
+ (mnQyy —mnQ, g
+n2 (20, +n*Q, Ve, +(n2Q,, +m?Q, ))e;  (3.6)
+(mnQ,, —mnQ, e

— 2mn [—2mnQ €, + 2mnQg e, + (M>—n>)Qy e )
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= [m4Qxx + }’14ny + 2m2n2Qxy + 4m2n2st]€1
+ [m2n2Q,, + m*n?Q,, + (m*+n*)Q,, —4m>n?Q e, 3.7

+ (m3*nQ,, —mn? vy (mn*—m3n)Q, , + 2 (mn3—m3n)Q; leq

0, =Q1161 + Q1262 + Q466 (3.8)
Similarly, 0, = Qs €1 +Qr26, + Q2666 3.9)
06 =061€1 +Q626, + Q66 (3.10)

This is the off-axis stress-strain relation that directly relates the given
strain in Figure 3.1(a@) to the resulting stress in 3.1(d), redrawn in
Figure 3.2. This relation can also be arranged in a matrix multiplication
table as follows:

?.iz €s
“«"’ Z

(29

YV
._L. o

Qj
(a) — (b))
Off -Axis Off-Axis
Strain Stress

Figure 3.2 The off-axis stress-strain
relations in stiffness. We have merged
the three steps in Figure 3.1 into one;

table 3.1

off-axis stress-strain relation for unidirectional
composites in terms of stiffness

< L7 €
5 | a 9 %
] @y @2 @
a; 0‘ / 05’ O‘ 6
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The major difference between the on-axis stress-strain relation in Table
1.6 ‘and the off-axis relation in Table 3.1 lies in the additional com-
ponents in the stiffness. These components with subscripts 16 and 26
are shear coupling terms that relate the shear strain to normal stress.
Those with 61 and 62 superscripts are normal coupling terms to relate
normal strain to shear stress. Such couplings do not exist in conven-
tional materials, or in unidirectional composites in their on-axis orienta-
tion. Geometric illustration of these coupling effects will be done when
we develop the off-axis orthotropic compliance. Symmetry of these
components can also be demonstrated in a manner similar to that used
for the Q,, component in Chapter 1. The stored energy in Equation
1.16 must contain interaction terms of 0,04 and 0, 0¢, or their equiv-
alent in strain components €, € and € €.

The relationship between the stiffness components of the on-axis
and the off-axis orientations can be summarized in Table 3.2 where
matrix multiplication is implied. These relations result from the deriva-
tion of Equation 3.8 and what was omitted in Equations 3.9 and 3.10.
These relations are limited to transformation from the on-axis, ortho-
tropic orientation where shear coupling components are zero. Note that
0, and 0, do not appear as column headings in this table.*

table 3.2
transformation of stiffness from on-axis unidirectional
composites in power functions

CQxx Qy Qy Css
Q, m* n? 2m2n2 Im2n2
@y n* m* 2m2n2 4m?n?
Q. mén? mn? m*+n* ~4m?n?
Qss | m?n* m*n? -2m*n* (m*-n%?
Qs mn -mn’ mn®-m°n  2mn®-m’n)
Qy6 mn? -m’n m>n-mn® 2(m>n-mn?)|

m=cosé&, n=siné

*If the transformation is from one off-axis orientation to another, additional columns for [V
and Q,, must be present. This unabridged transformation relation can be found in the
Appendix A of this book.
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This formulation appears most frequently in the literature. This is easy
to use if the ply orientation is *45 degrees, or when one or more
on-axis moduli are zero. Note that all the sums of exponents of the
trigonometric functions in this table are in the fourth power which are
by definition characteristic of the 4th rank tensor. The stress trans-
formation equations are governed by the 2nd power functions, as we
have shown in Table 2.1, and belong to the 2nd rank tensor. The strain
transformation equations in Table 2.5 are also governed by 2nd power

functions, but are different from those for stress because engineering

shear strain is used which is twice the tensorial shear strain.

The critical issue is again the sign convention. The angle used in this
table is the ply orientation. Because of its importance, Figure 2.2 is
shown here again for emphasis. For unidirectional composites, the
on-axis, orthotropic, and material symmetry axes coincide. We use the
x-y axes to denote this configuration. The off-axis, generally ortho-
tropic configuration refers to ply orientations other than O or 90
degrees. We use the 1-2 axes for the off-axis situation. This is shown in
Figure 3.3(a). But for multidirectional laminates, there can be many ply
orientations. The 1-2 axes remain as the reference coordinates for the
laminate. Each ply orientation 6; can be designated by x-y; axes. The
angle used in Table 3.2 is that shown in Figure 3.3. This sign conven-
tion is not used universally. Some authors define ply orientation
opposite to that shown in Figure 3.3. Then their transformation rela-
tions will be different from those shown in Table 3.2. In particular, any
term that has the odd power of sines (7 and 7#3) must change its sign.
The shear or normal coupling terms Q,¢ and Q,¢ are the only com-

“ponents affected.

2

N \l <
/J'/ /—i—/

(a) (b)

Figure 3.3 Positive ply orientation is shown. The
notation for unidirectional composites normally
follows that in (a); that for multidirectional
composites, in (b) where 6; is the orientation of
the i-th ply or ply group.
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In order to clearly define the ply orientation or the angle of trans-
formation, Figure 3.4 shows alternative relations between the co-
ordinates x-y and 1-2. The transformation relations of Table 3.2 are
applicable to the angles so defined in Figure 3.4.

y 2 2
N
’ z/

\T /?’(’X

al (b)

Figure 3.4 Angle of transformation for
Table 3.2. Angle is positive in (a); and
negative in (b). Many authors use the
relation in (&), but call the angle positive.
Then the relation in Table 3.2 for the 16
and 26 components must change sign.

N\

—
~

~

There is a fundamental difference between the transformation relations
for the stiffness and those for stress and strain.* For the stiffness, the
relation is based on a transformation from the on-axis or material
symmetry axis to an arbitrary reference axis. The column headings in
Table 3.2 have subscripts x, y, s; while the row headings, 1, 2, 6. We go
from x-y to 1-2 coordinate system for the stiffness. But for stress and
strain, the transformation, such as those shown in Tables 2.1 and 2.5,
we go from the off-axis to the on-axis, or 1-2 to x-y coordinate system.
While the selection of 1-2 or x-y or any other description of the axes is
arbitrary, the stress and strain transformations shown above are valid
provided the angle of rotation follows the established signs convention;
i.e., positive for counterclockwise rotation. The transformation of
stiffness shown in Table 3.2 is valid only when we go from on-axis to
off-axis. If we want to go from one off-axis orientation to another

*The difference is referred to in Appendix A as the material versus behavioral quantities.
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off-axis, additional terms are required for the transformation relations.
This can be readily derived by adding the contribution of the normal
coupling term in Equation 3.2. The result is shown in Appendix A.

We can further develop a multiple-angle formulation for the stiffness
transformation in place of the power functions in Table 3.2. This proc-
ess can be done directly by substituting the following trigonometric
identities into Table 3.2.*

m* = %(3 + 4c0s26 + cos40)

md3n = %(25in20 + sin40)

2p2 = %(1—cos46) G.11)
mn3 = %(2sin26 — sin40)

n* = é(B — 4c0s260 + cos48)

We will now show three examples of the substitution of values from
Equation 3.11 into Table 3.2:

0, =m*Q,, +n‘*ny + 2m?n? (O, +20]

(3 + 4cos20 + cos46)0Q, +l§(3 —4cos20 + cos46)Q,, .

L
8
. 1

+Z(1 —cosdd)Q,, + 20,]

1
[3Qxx + 3ny + 2Qxy +4ng] +5[Qxx - yy]COS20

o0 |-

+-18-[Qxx + 0y, —20,, —40]cos48

= U, + U,co0s20 + Uscosdf (3.12)

*This was suggested to us by P. W. Mast, U.S. Naval Research Laboratory, Washington, D.C.
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Ql2 = m2”l2 [Q_xx + ny _4st] + [m4 + n4]Qxy

CO | =~

: 1
(1= cos40)[ Qs + Q) — 40y] +2(6 + 2c0840)0,.,

00 | =

[Qey +Q,, +60,, —40,,]

—%[Qxx +Q,, —20,, —40,,]cos46

U, — Ujscos4 (3.13)

I

Qe

m*nQ,, —mn®Q,, + [mn3 *rnjn][Qxy + 20,1

(2sin26 + sin40)Q, , — % [2sin26 —sin461Q,,,,

00 | —

——;—sin49[Qxy + 20,1

0o |—

[2Qxx - 2ny]Sin26 +—é—[Qxx + ny —2Qxy —4st]Sin40

U,sin26 + Uj;sindf ' (3.14)

I

1
2

We can repeat the process for the other three components of the off-
axis modulus and list the results in Table 3.3 in matrix multiplication
format and using the following definitions of the linear combinations of
modulus:

Uy =3 [30, +30,, +20,, +40,,]

U, =%[Qxx —Qy,l

Us =5 (Qux + Qyy = 205, =40 (3.15)

(continues)
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1
U4 =§ [Qxx + ny + 6Qxy - 4ng]

1 .
Us ==10,, +0Q,, —20,, +40Q,,] (3.15)
P8 v Y ! (concluded)

table 3.3

transformed stiffness from on-axis uni-
directional composites in multiple angle

functions
/ 7 U,
@, Y, cos28 cos48
@,z 7 ~cos28 cos48
@2 Uy -cos48
Qs Us - cos48
Q6 + sin28 sin4é
(o ;’ sin28 -sin48

This formulation has two distinct advantages over the power function
formulation. First, the invariants are explicit. Secondly, the integration
and differentiation of multiple angle functions are easier than those of
power functions.

From the transformation equations in Table 3.3, we can show the
off-axis combinations listed in Equation 3.15 are: .

Ul = é[3Q11 +30,, + 20y, +40Q66] (3.16)
From Table 3.3:

= %[6U. +2U, +4Us ] 3.17)
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From Equation 3.15:
= E‘Z{[lsgn +180,, + 120, + 240,,1 + (20, +20,, +
120, — 80, + [40,, +40Q,, =80, + 160,,])

1
- —6—4_[24Q"x +240Q,, +160,, +320] (3.18)

1
= §[3Qxx +30,, +20,, +40]
= U, = an invariant

Similarly

U; = U,cos26 = not invariant

U; = Uscos46 = not invariant

(3.19)
Us=U, = an invariant
Us = Us = an invariant

When the off-axis(primed) and on-axis(un-primed) combinations are
equal, they are by definition invariant. This is analogous to the stress
invariants in Equation 2.14. Note that U,, U,, and Us are first-order or
linear invariants, of which two are independent because we can show
from Equation 3.15 that

U, =-%[U, —U,] (3.20)

This relation between the invariants is analogous to that between the
modulus of isotropic materials shown in Equation 1.23. We have shown
that stress and strain possess a second-order or quadratic invariant each;
i.e., the radius of Mohr’s circle. The modulus also possesses second-
order invariants. They can be derived as follows. We will first define
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two additional linear combinations for the modulus.

Us =%[Q16 + 0561 =%Uzsin26

(3.21)
U/ =%[Ql6 — @261 = Ussindé
We can now derive two second-order invariants as follows:
R? = U,? +4U?
= U3 [cos?20 + sin?20] (3.22)
= U2
or
R, = U, (3.23)
Similarly,
R2 = U3* +U;?
= U2 [cos?40 + sin?40] (3.24)
= U2
or
R, = #U; (3.25)

where R, and R, are invariants and U, and U, are not. The values of
U, and Uj stated in Equation 3.19 are based on the on-axis orientation
for which the shear/normal coupling terms are zero. For off-axis orien-
tations, terms containing Uy and U; must be added to the relations in
Equations 3.19 and 3.21. This is shown in Appendix A. The R’s are
radii of the equivalent Mohr’s circles for the modulus. (See Figure 3.9.)
They must always be positive. The U’s can be positive or negative. In
fact, U, would be negative if the longitudinal and transverse directions
are interchanged. The correct sign in Equations 3.23 and 3.24 must be
picked to make R, and R, positive. ‘
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We can derive the transformation equations for stiffness in terms of
invariants as we did for stress and strain transformations and shown in
Tables 2.4 and 2.8. If we limit ourselves to transformed stiffness from
the material symmetry or orthotropic axes, the results will be identical
to those shown in Table 3.3; in which case, positive values of U, and
U, are assigned to R, and R,, respectively. This is done in Table 3.4,
where matrix multiplication is implied.

table 3.4

transformed stiffness from on-axis uni-
directional composites in invariant functions

/ R, R,

Q, 17 cos28 cos48
@,z Y, -co0s2b cos48
@2 Uy -cos48
Oss Us - cos48
Q6 % s/n28 sin48
Qs £ sin28 - sin48

This table is valid for the x-axis to be pointed along the fiber orien-
tation, like that in Figures 3.3 and 3.4. If a material is not orthotropic
but anisotropic, the table must be modified. The definitions of R’s will
remain the same as Equations 3.22 and 3.24. But the off-axis linear
combinations of stiffness Uy, Uy, Ug and U; will have additional
terms. There will also be two phase angles, analogous to that for the
stress transformation in Equation 2.19. The transformation of
anisotropic modulus will be listed in' Appendix A.

2. examples of off-axis stiffness

We will show in this section the transformed stiffness for a graphite-
epoxy composite. The particular material system for our example is the
Union Carbide and Toray T300 filament and Narmco 5208 resin, or
T300/5208 for short. The stiffness data for this material were listed in
Table 1.9. We can immediately calculate the transformed stiffness by
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substituting the data into the transformation equations in Table 3.2.
Numerical data for the transformed stiffness are listed in Table 3.5 and
plotted in Figure 3.5. All six transformed components of the stiffness
are shown. The angle of ply orientation is also shown where counter-
clockwise direction is positive.

table 3.5

transformed stiffness of T300/5208 unidirectional composites (GPa)

0 051 02, 02 Qs Os56 (129
0 181.8 10.3 2.90 7.17 0 0

15 160.4 11.9 12.75 17.05 38.50 4.36

30 109.3 23.6 3246 36.78 54.19 20.05

45 56.6 56.6 4232 46.59 42.87 42.87

60 23.6 109.3 3246 36.78 20.05 54.19

75 11.9 160.4 12.75 17.05 4.36 38.50

90 10.3 181.8 2.90 7.17 0 0

An alternative method of arriving at the same transformed stiffness
is the use of the multiple-angle or the invariant formulation in Table 3.3
or Table 3.4, respectively. We must first determine the values of the U’s
using Equation 3.15 and data in Table 1.9. The results of several uni-
directional composites including T300/5208 are listed in Table 3.6. A
typical calculation is listed as follows: ‘

From Equation 3.15
1
Uy = —8'[3Qxx + 3Q}’}’ + ZQX.V +4st]
From Table 1.9 for T300/5208

U, = -}3—(3 X 181.8 +3.X10.34 +2 X 2.897+4 X 7.17)

(3.26)

76.37 GPa

off-axis stiffness of unidirectional composites
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Figure 3.5 Transformed, off-axis stiffness of T300/5208. The angle is
the ply orientation, and is positive for counterclockwise rotation.
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table 3.6 .
linear combinations of stiffness for transformation of modulus (GPa)
U, U:=R, U3=R, Us Us

T300/5208 76.37 85.73 19.71 22.61 26.88
B(4)/5505 87.80 93.21 23.98 28.26 29.77
AS/3501 59.65 64.89 14.25 16.95 21.35
Scotchply 1002 20.45 15.38 3.32 5.51 7.46
Kevlar 49/Epoxy 32.44 35.54 8.65 10.53 10.95
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With the values listed in this table and the equations in Table 3.3 or 3.4,
we can arrive at the same transformed stiffness listed in Table 3.5 and
shown in Figure 3.5.

A typical calculation by the multiple-angle transformation is listed as
follows:

From Table 3.4:
Q.11 = U, +U,cos20 + U;scos40 (3.27)

From Table 3.6 for T300/5208:
Q. = 76.37 + 85.73c0s20 +19.71cos40 (3.28)

when
6

45 degrees, cos20 = 0, cosdf = —

011 76.37 —19.71 = 56.66 GPa (3.29)
This result agrees with that shown in Table 3.5.

The calculation of transformed stiffness using the invariant formu-
lation as shown in Table 3.4 will be identical to the multiple angle
because

R, = +U,
(3.30)
R, = +U,

This identity is true only for the stiffness transformation with the fiber
axis placed along the l-axis; i.e., ‘

Qll >Q22

As we shall see later, the transformed compliance calls for negative signs
in Equation 3.23. Then the multiple-angle formulation is not identical
to the invariant formulation because of this sign change.

A number of general remarks can be made about the transformed
stiffness, applicable to orthotropic composites listed in Table 3.6.

Mirror image exists between Q,;, and Q,,, and Q,¢ and Q,¢. This
can be shown by substituting 6+90 into appropriate equations in Tables
3.3 or 3.4, and seen in Figure 3.5.

oo R
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0,1(6+90) = U, + U, cos2(6+90) + Uscosd(6+90)

= U, — U,cos20 + Uscosd (3.31)
= (,,(0)

These two components can be superimposed by a displacement of 90
degrees along the 6-axis. This is expected because cosine functions are
even. We can also show

Q26 ( 9) = —QZG 9) = _Q1 5(9"90) = +Q16(9O‘—9) (3-32)

These two components can be superimposed by a displacement and a
rotation. This is also expected because these components are dependent
on sine furnictions (see Table 3.4) which are odd.

The angular dependency and amplitude of Q,, and Q¢ are the
same; i.e., 40 and U,, respectively. (See Figure 3.6.) The two trans-
formed components are vertically displaced by the amount of Us — Uj.
The Poisson and shear components are dependent on cosine functions,
and therefore symmetric about the § = 0, 90, and *+45 degrees. We can
readily derive from Equation 3.15 that

Us —Us = Qs — Oy, (3.33)

This is another invariant. This is not an independent invariant. We can
say that any linear combination of invariants is an invariant.

The first four transformed components in Table 3.3 (i.e. the normal,
Poisson, and shear components) are governed by cosine functions. They
are even functions and not sensitive to the sign of ply orientation. So an
error in the sign will not affect these components. But the last two
components in Table 3.3 are the shear or normal coupling components
and are governed by sine or odd functions. A sign error will lead to a
real error.

Because of the symmetry relations between these transformed com-
ponents, we only need to show three curves instead of six in Figure 3.5;
either the three curves on the left of this figure or the three on the
right. In Table 3.5, 0,, and Q,¢ can be deleted, if we know their
symmetry relation with Q,,; and Q, ¢, respectively.

The Q,, or Q,, component is made up of three terms; one constant
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Figure 3.6 Transformed stiffness as functions of U’s. The relations in
Table 3.3 are shown graphically. Each transformed component contains
an invariant and/or cyclic terms.

or invariant term and two cyclic terms with angular rotations 2
and 4 times that of the coordinate rotation; see Equation 3.27. Since
the cyclic terins do not contribute to the total area under this curve,
this area is simply proportional to U,. Thus, this invariant represents
the Young’s modulus or normal (as opposed to shear) stiffness potential
of this unidirectional composite. The cyclic terms contribute to the
directional changes. The increase in the stiffness in one direction must

S e e
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be made up by a decrease in some other direction while the total area
under the transformed modulus remains constant and invariant. This is
like an incompressible material that can undergo a shape change with-
out any volume change. Figure 3.6 shows the contribution of the U’s to
the stiffness components.

The shear and normal coupling terms Q, ¢ and Q, ¢ have no invariant
associated with -the-transformation. They are not independent in the
sense that they are derivable from Q,; and Q,, by differentiation,
respectively. From Table 3.3 or 3.4, :

o0
TH‘—' = —2U,sin20 — 4Ussind6 = —4Q, ¢ (3.34)
aQ’Z 2 . .
3 2U,sin20 —4U,sind = 40,4 (3.35)
From Equation 3.34
- Q,6 =0, when 6 = 0 and 90 degrees, or (3.36)

when U, + 4U;co0s26 = 0, or

U, : (3.37)
cos280 = — ——
40,
For T300/5208 from Table 3.6
U, '
o 85.73/4 x 19.71 = 1.08 > | (3.38)

3

There is, therefore, no solution for 8 from Equation 3.37. The shear
coupling goes to zero only at 0 and 90 degrees. The same holds true for
Q. ¢, except the sign in Equation 3.37 is positive. Because of these rela-
tions, the tangents, maxima and points of inflection between Q,, and
Q; 6 can be obtained from

00y,

YT =—4U,c0820 — 16U;cos48 =0 (3.39)
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Substituting cos40 = 2cos?226 — 1, and rearranging, we get

cos226 + ﬂ cos20 —L=0 (3.40)
8U, 2 '
The solutions for 6 are .
U2 U2 ) 2 1
20 = — t — ) += 3.
cos 16U, (16U3/ 2 (3.41)
For T300/5208,
cos260 = 0.485;—1.029
(3.42) .
0 = 30.4 degrees; no solution

At this angle, it is the point of inflection in the Q,, curve and a
-maximum in the Q,,. Similarly, at 59.6 degrees, Q,, has the inflec-
tion, and @, ¢, the maximum. These relations are shown in Figure 3.7.
Points of inflection of Q, ¢ can be found from letting

%014 . .
-—553— = 8U,sin26 + 64U,;sin46 =0 (3.43)
8sin26[{ U, + 16U;co0s20] =0 (3.44)

sin26 = 0or 6 =0, 90 for all components

20 v 3.45)
CcosS = - .
{60, (

0 = 52.88 degrees for T300/5208

The power functions formulation for the stiffness transformation
can be used to demonstrate the dominance of the longitudinal proper-

ties of unidirectional composites. Since the first column of Table 3.2 is ,
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Figure 3.7 Relationships between transformed stiffness. Special
relationships are expressed in Equations 3.34 to 3.45. Note the
point of inflection in Q,; is the point of maximum value in Q, .
At 0 and 90 degrees, Q, ¢ are zero, and the slopes of Q' are also
zero. The points of inflection for Q, ¢ are also'shown. .

many times higher than the other components;i.e., 181 GPa versus 10,
3 and 7 for T300/5208 based on the data in Table 1.9, we can show the
contribution of the first column or that of Q,, in Figure 3.8. The
dashed lines are those transformed stiffness based on the first column
of Table 3.2; the solid lines are the complete solutions, as those in
Figure 3.5. We can see that for a highly anisotropic unidirectional com-
posite such as T300/5208, this approximation is fairly close to the
exact. By the same token, we can approximate the values of U’s in
Equation 3.15 as:
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U, - 3Q8xx
U, = Qz"" (3.46)
m-m=m=%x
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Figure 3.8 Approximation of transformed stiffness. Only the Q,, term
for T300/5208 is used. The dashed lines are approximate; the solid lines,
exact.
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The approximate transformation equations can be simplified from
Table 3.3 as follows: '

Q14 =%(3 + 4cos20 + cos40)Q,, =m*Q, . (3.47)

This and the other components of transformed stiffness will be the
same as the first column of Table 3.2. Thus, both power functions and
multiple-angle functions for the stiffness transformation reduce to the
same limiting case when only the Q,, is present.

The transformation relations in Tables 3.3 and 3.4 can be illustrated
by two generalized Mohr’s circles similar to the Mohr’s circle for the
transformation of stress or strain. From the first equation in Table 2.4
for the stress transformation:

0, =1+ Rcos2[6—0,] (3.48)
A Mohr’s circle can be constructed as shown in Figure 2.8. The location
of the center is /, the radius of the circle is R, and the phase angle
determines the specific stress components for a given state of stress.

The transtormation of modulus is governed by similar equations such
as the first one from Table 3.4:

Qi1 =U, + R,cos20 + R, cos4f (3.49)
This relation can also be shown as Mohr’s circles. Now we have two
circles with radius R, and R,, and angular rotations two and four times

that of the coordinate axes. The distance between the circle is the
invariant U,;. The generalized Mohr’s circles for the stiffness of an

orthotropic material such as a unidirectional composite T300/5208 are

shown in Figure 3.9 using the data in Table 3.6. The radii of the circles
dictate the degree of orthotropy. The direction of rotation correspond-
ing to a positive ply orientation 8 is also shown in this figure. As we will
see in the next chapter, the effective radii of the generalized Mohr’s
circles reduce as unidirectional plies are made into multidirectional
laminates. The distance between the centers, however, remains invariant
and fixed. In the limit, the radii can go to zero and we are left with
only the isotropic constant U;. The process of lamination always
reduces the radii of the generalized Mohr’s circle. '
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Figure 3.9 Generalized Mohr’s circles for the stiffness of T300/5208.
The distance between the two centers is the first invariant. The radii
for a given material are also fixed. The angle of rotation of the co-
ordinate axes is'magnified to two and four times in the Mohr’s circles.

3. off-axis compliance

Analogous to the approach for the off-axis modulus, we can derive the
off-axis compliance following the sequence of Figure 3.10, which is a
repeat of Figure 2.3.

0.; lo [ &
e 4 c @
POE (r\/!gx NS e 'fs
- —= O —_ -— —e
‘ ! A"\l /‘% i ]
‘ \ \ 1
At Si T
(a) (b) TTER S (c) - (d)
Off - Axis On-Axis """ On-Axis Off-Axis
Stress Stress Strain Strain
1 5 J
h=1,2,6

Figure 3.10 Derivation of off-axis compliance.
From (a) to (b): Positive stress transformation.
From (b) to (c): Stress-strain relations in compliance.
From (¢) to (d): Negative strain transformation.
We can go directly from (a) to (d) by merging the three
steps into one.
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Since the derivation of the compliance transformation is analogous
to that of the stiffness transformation from Equations 3.1 to 3.10, we
will write only the first line of each equation for this derivation.

® To go from (a) to (b) in Figure 3.10, we use the equations for
stress transformation from Table 2.1:

o, =m?o, +n?0, + 2mnog (3.50)

X
® To go from (b) to (¢) in Figure 3.10, we need the on-axis stress
strain relation in compliance from Table 1.5.

€ = S, [m?o, +n%o, +2mnogl
(3.51)
+ Syy [n%0y + m20, — 2mnoag]

® To go from (c) to (d) in Figure 3.10, we neéd the negative strain
transformation in Table 2.5, where the sine functions now have
negative signs.

€p = mPe, +n’e, —mne ' (3.52)
= {m*S,, +ntS,, +2m*n®S,, + m*n*S}o,
+ (m2n?(S,, +S,,]1 +[m* +n%]S,, —m?n?S}o, (3.53)
+ {(2m3nS,, —2mn3S,, + [mn® — rh3n] (2S,, +Ss1}as
€ = 8110y 81,0, + 5,606 (3.54)

Note that shear coupling terms appear in this off-axis unidirectional
composite, in an analogous fashion as the off-axis stiffness equations
3.8 to 3.10. The off-axis stress-strain relation in terms of compliance is
presented in a matrix multiplication table in Table 3.7. This is similar to
the off-axis stress-strain relation in terms of the stiffness in Table 3.1.
The symmetry relations for the transformed compliance can be shown
by including interaction terms 0,04 and 0,0 in addition to 0,0, in
the stored energy expression in Equation 1.16. We can then show that

Si6 =Se1. S26 = S62 (3.55)
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Figure 3.11 Transformed, off-axis compliance of T300/5208. The angle
of rotation is positive when it is counterclockwise.

off-axis stress-strain relation for unidirectional
composites in terms of compliance
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The transformation equations for the compliance are taken from
matching like terms in Equations 3.53 and 3.54, and will be shown in

Table 3.8. This table is analogous to the transformed stiffness in
Table 3.2. '

table 3.8

transformation of compliance of on-axis unidirectional
composites in power functions

Sxx Syy Sxy Sss
S, m* n* 2mén? mén®
S,2 n* m* 2m?n? m?n?
S,2 m2n? m?n? m*+n* -m?2n?
Sss |[4m2n 4m2n2  -8m?n? (m2-n2)?
S,s |2m?n -2mn’ 2(mn’-m°n) . mn’-m>n
S,s. |2mn? ~2m?n  2(m’n-mn?®) m3>n-mn?

m =cos 8, n=siné

Note that the difference between this table and Table 3.2 for the trans-
formation of stiffness can be traced to the use of engineering shear
strain. For each component with single subscript 6, the coefficients on
each row shall be multiplied by 2. For components with double sub-
script 6, such as Sg4, the coefficients shall be multiplied by 4. In the
last column of Table 3.8, the effect of double subscript s is to divide
each coefficient by 4. All the differences between Tables 3.8 and 3.2
can be accounted for with these corrections.

The multiple-angle formulation of the transformation of compliance
follows precisely the same pattern as that for the transformed stiffness.
The. multiple-angle trigonometric identities in Equation 3.11 can be
substituted into the coefficients in Table 3.8. By. following the same
process as in Equation 3.12 to 3.14, we can derive the multiple-angle
representation of the transformed compliance in Table 3.9.
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table 3.9
transformed compliance for on-axis unidirectional
composites in multiple-angle functions

/ Uz Us
Su U, cos2é cos46
Ss2 U, —-c0s268 cos48
S,z Uy ) -cos48
Ses Us =4cos48
Sis sin28 2sin 48
S26 sin28 —2sin 48

’I"he definitions of the U’s are:

1
Uy =5 (38, +35,, +25,, +5,]

Up =58, =Sy,
U, =§-{Sxx +5,, —2S,, — 5] (3.56)

SS]

Us =5 (Sex 5, +65c, =S

Us =%[sxx +8,, — 25y, + 8]

The difference between the U’s of this equation and those for the
stiffness in Equation 3.15 can again be traced to the use of engineering
shear strain. The shear invariant Us and the S;; component must be
multiplied and divided by four, respectively, in order to match
Equation 3.56 with 3.15.

Of the three linear or first-order invariants in Equation 3.56 only two
are independent. The following relationship shows that the third
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invariant is dependent on the other two.

Us =2[U, —U,]

(3.57)

There are also two quadratic or second-order invariants which can be

derived from the second and third columns in Table 3.9.

R? =

IN

or
R, = U,

_ L
R} =27 1811 +812 = 2513 = 8461% + == [S16 —S1617

[S11—52,12 +i‘[S16 + 82612 = U3

(3.58)

(3.59)

(3.60)

3.61)

From the relationship above, we can derive the transformation equa-
tions in terms of the invariants. For the compliance of an on-axis uni-
directional composite, U, and U; are negative if the longitudinal(the
x-axis) stiffness is higher than the transverse(the y-axis) stiffness. (See
data in Table 3.11.) The transformation of compliance using. the
invariant functions is listed in a matrix multiplication table as follows:

table 3.10

" transformed compliance of on-axis unidirectional
composites in invariant functions

/ R R2
Su U, -cos28 -cos48
S22 Y, cos2b -cos48
S,z U, cos48
Ses Us 4cos48
Sis -sin28 —2sin 48
Sas -s/n28 2sin 48
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Note that the signs of the trigonometric functions are changed from
those in Table 3.9 because U, and U; have negative values. So negative
signs must be used in Equations 3.59 and 3.61, or

Rl = —U2
(3.62)

This choice of signs is different from the invariant functions of the
modulus transformation in Table 3.4 where the positive values of U,
and U; were picked. This was so because Q, , is greater than (O for
most unidirectional composites. Table 3.10 as well as Tables 3.8 and
3.9 are limited to orthotropic compliance. For anisotropic compliance,
comparable transformation tables are shown in Appendix A.

4. examples of off-axis compliance

We will show in this section the transformed compliance for
T300/5208. The orthotropic components of the compliance are listed
“in Table 1.8 for this composite. When these values are substituted into
the transformation equations in Table 3.8, we will get the transformed
compliance. , ]
Alternatively, we can arrive at the same transformed components if
we use the U’s computed from the relations given in. Equation 3.56, and
the values for typical composites are listed in Table 3.11. The trans-
formed compliance can then be computed from the relations in Table
3.9. The numerical results are listed in Table 3.12, and curves plotted in
Figure 3.11.

table 3.11 '
typical values of linear combinations of compliance for on-axis unidirectional
composites (TPa)™!

Ul U2 ="‘R1 U3 =_R2 U4 Us
T300/5208 55.53 —45.78 —4.22 — 577 1226
B(4)/5505 43.42 —24.55 —13.94 —15.06 - 117.0 .
AS/3501 : 61.62 —52.18 —2.20 — 438 1320
Scotchply 1002 83.50 —47.50 —10.20 —16.90  200.8
Kevlar 49/Epoxy 126.40  —84.33 —28.86 -3333 3194
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table 3.12

transformed compliance for T300/5208 unidirectional composites (TPa)™*

6 S11 S22 S12 Ss6 S16 ‘ S26
0 5.52 97.09 —1.55 1394 0 0

15 13.77 93.06 —3.66 131.0 —30.20 —15.58

30 34.75 80.53 —7.88 114.1 —46.96 —32.34

45 -59.75 59.75 —9.99 105.7 —45.78 —45.78

60 80.53 34.75 . —7.88 114.1 —32.34 —46.96

75 93.06 13.77 —3.66 131.0 —15.58 —30.20

90 97.09 5.52 —1.54 1394 0 0

The general remarks on the transformed compliance are very similar
to those on the stiffness. We will simply repeat the relevant features
without further detailed discussions.

Mirror image exists between S, and S,,, and S, ¢ and S, . This can
be seen from Table 3.12 and Figure 3.11.

The amplitude of S, , is now one quarter that of S¢¢. The angle 46
remains the same for both transformed components.

Again, only the shear and normal coupling components are affected
by the sign of the angle of rotation.

Because of the symmetry, only three transformed components S, ,,
S1,(or S¢¢) and S, ¢ need to be drawn.

In Figure 3.12 the dashed lines show the approximation of the trans-
formed components using only the first one or two columns of the
complete transformation equations in Table 3.9. Because of the partic-
ular values for T300/5208, the approximations give excellent results.
This is analogous to the transformed stiffness shown in Figure 3.8.

5. inverse relationship between modulus and compliance

The off-axis stress-strain relations as listed in Tables 3.1 and 3.7 are
based on stiffness and compliance, respectively, and are repeated here
as Tables 3.13 and 3.14. The difference between these stress-strain rela-
tions is that the role of stress and strain are the inverse of each other. In
Table 3.13, the strain is the independent variable; in Table 3.14, the
stress is the independent. We inverted the on-axis stress-strain relations
in Chapter 1. We went from Equations 1.8 to 1.11 by simply solving
the simultaneous equations. We need only to repeat the same process
for the off-axis case, where shear and normal coupling terms are no
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Figure 3.12 Comparison of exact and approximate transformed
compliance in terms of the multiple-angle functions for T300/5208.
The dashed lines are approximations without the last column in
Table 3.9 or U3 = 0.

table 3.13

off-axis stress-strain relation for unidirectional
composites in terms of modulus
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table 3.14 .
off-axis stress-strain relation for unidirectional
composites in terms of compliance

g 22 Os
€, Sy Sz Sie
€2 Ser S22 S26
A Ser Sez Ses

longer zero. We can proceed with the inversion or solution of these
simultaneous equations by the method of determinant as follows:

We will assume that we are given the equations in Table 3.13. We will
first obtain the determinant of the stiffness components:

Determinant of Stiffness= det Q; = A (3.63)

= Qilezst +2012026%61 —sz_Qfe —Qelez —Qquz

(3.64)
Si1 =(Q22066 —Q36)/0
S,2 =(Q11Q66 — Ql6)ID
Si2 =(Q16Q26 — Q12Q66)/
Ses = (211022 — Q12)/A (3.65)

Si6 =(0120Q26 "'sz.le)/A
S26 =(Q12Q16 _‘Q11Q26)/A

We have obtained the components of compliance from those of
stiffness. If we are given the compliance and want to kpow the
stiffness, we simply interchange the Q’s and S’s in these equatlox.ls.

Thus there are many ways that we can compute the off-axis stiffness
or compliance. This is diagrammed in Figure 3.13. The following opera-
tions are involved.
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e From engineering constants, compute the on-axis compliance and
stiffness shown in Tables 1.8 and 1.9, respectively.

e Compute transformed stiffness using its transformation equations
in Tables 3.2, 3.3, or 3.4; and transformed compliance using ;
Tables 3.8, 3.9, or 3.10. !

e Alternatively, we can go directly from stiffness to compliance by ;
inversion in Equations 3.64 and 3.65; or from compliance to ~~ 7
stiffness also by inversion.

e® Off-axis engineering constants, to be shown in the next section,
must be obtained from the off-axis compliance.

!
|
JTransformation Oe o o
Oyxs * *|= i it 7]
1 . :
1
} ! 1 . ]
[}
Exo o Inversion ! Inversion
\4 : Y
Transformation
SXX'.. ; ‘5‘//"' ;EI"'
I

]
ON-AXIS —»i«— OFF - AXIS

Figure 3.13 Relations among the on-axis and off-axis stiffness, com-
pliance and engineering constants. The connecting lines indicate the
paths of mathematical operations. There is no direct link between
on-axis stiffness and off-axis compliance, or on-axis and off-axis
engineering constants.

6. off-axis engineering constants

We first defined engineering constants in Chapter 1 for orthotropic,
on-axis unidirectional composites. Equations 1.9 and 1.10 show the
relations between engineering constants and the components of com- '
pliance. In the case of anisotropic, off-axis unidirectional composites, :
we can relate the compliance components in Table 3.7 to engineering
constants by performing the following simple tests:

e Uniaxial tension test along the 1-axis.

0, #0
(3.66)
0, =06 =0

' - H
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From Table 3.7.
0y

€, =510, =_E—
1

€, =8,,0, (3.67)

€6 = S610,

Now define coupling coefficients

€2
Vy, =——
€
(3.68)
€
€
Combining with Equation 3.67, we obtain
Y =_S2l
21 1,
(3.69)
yo = S8t
61 55,

Note the terms are the longitudinal Poisson’s ratio and shear
coupling coefficient, respectively. The latter does not have a
counterpart in conventional materials.

Va1

S ==V, S = —

21 21. 11 El
(3.70)

Ve 1

S = )] S 2

61 61211 El
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® Uniaxial tension along the 2-axis:

*0
72 (3.71)
o, =06 =0
From Table 3.7
P
€2 = 5220, =_E‘2’
€; =S51202 (3.72).
66 =S6202
Similarly, we can define:
€, _ Sl2
SEir
(3.73)
_ €6 _ Se2
ves €2 S22

These terms are the transverse Poisson’s ratio and shear coupling
coefficient associated with the 2-axis.

s S Vi2
= —p IR T —
12 12922 Ev2
(3.74)
s S Vg2
= v = —_—
62 624272 E2
® Pure shear test along the 1-2 axes
0g 0
¢ (3.75)

g, =02=0
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From Table 3.7

O¢
€6 = S6606 =‘E’6’
€, =5, 406 (3.76)
€, =5,606

We can define:
» € Sie
te €  Se6
(3.77)

vee =2 =328
26 €6 Ses

These terms are the normal coupling coefficients. Conventional
materials do not have such coupling. By rearrangement:

Vie

Si16 = V1656 =_E:
(3.78)

. Vae

S26 = V26566 ZE

Thus in place of Table 3.7, the stress-strain relation for an off-axis
unidirectional composite in terms of engineering constants can.be
shown in a matrix multiplication table as follows:

table 3.15

off-axis stress-strain relation for unidirectional
composites in terms of engineering constants

G % %

g / L2 Ze
£ 2 £

/ 2,

& | -%& . 226
/ £; Eg

e | 2 iz
6 s & £s
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Since the compliance matrix is symmetric,

S12 =82y
Sis = Se, (3.79)
S26 =S62

We can rearrange Table 3.15 and obtain an alternative arrangement
shown in Table 3.16, where each row instead of each column is now
normalized by a constant.

table 3.16
alternative arrangement of stress-strain relation of
an off-axis unidirectional composite

g % %
“« | & E #
V2

From the same symmetry property in Equation 3.79, we can im-
mediately derive the following reciprocal relations:

var B _Saa _
vi. E, Si
vor By _Ses _, (3.80)
vie Es Sia

where a is the ratio of the Young’s moduli; and 4 and c, useful ratios to
designers interested in the relative stiffness between bending and

[
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twisting. While the symmetry condition for the compliances holds; i.e.,

Sl.]. =S}.. (3.81)

similar symmetry condition for the anisotropic coupling coefficients
does not hold; i.e.,

Using the data of T300/5208, we can calculate the numerical values
of all the engineering constants and tabulate typical results in Table
3.17.

table 3.17

off-axis engineering constants of T300/5208 unidirectional composites
(GPa} or dimensionless

6 El,GPa Eﬁ,GPﬂ ‘921 Ve1 Vie

0 181.0 7.17 0.280 0 0

5 154.4 7.22 0.278 —1.673 —0.0782
10 107.8 7.37 0.273 —2.273 —0.155
15 72.62 7.63 0.265 —2.193 —0.230
30 28.78 8.76 0.226 —1.351 —0411
45 16.73 9.46 0.167 —0.766 —0433
60 1241 8.76 0.0978 —-0.401 —0.283
90 10.3 7.17 0.0159 0 0

The data in Table 3.17 are plotted in Figure 3.14. The Poisson’s ratios
are even functions of ply orientation; and the shear and normal
coupling ratios are odd functions. When ply orientation is positive,
which is the case in Figure 3.14, the shear and normal coupling ratios
are negative for T300/5208 and for other composite materials listed in
Table 1.7.

In Figure 3.15, the deformed shapes of squares under uniaxial tensile
and compressive stresses are shown. Due to nonzero shear coupling
coefficients, shear is induced. There is no counterpart of this material’s
response in conventional materials. In Figure 3.16, the deformed shapes
of squares under pure shear are shown. Due to normal coupling, the
area of the squares undergo contraction or expansion depending on the
sign of the applied shear and that of the normal coupling coefficient.
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Figure 3.14 Three dimensionless coupling
coefficients of unidirectional T300/5208.
Data are listed in last three columns of
Table 3.17.

The relation between off-axis
engineering constants and com-
ponents of stiffness can best be
expressed by applying simple tests
such as uniaxial tension and pure
shear tests like those used earlier in
this chapter. By substituting the
strains induced by a uniaxial ten-
sion test, shown in Equation 3.67
et al., into the stress-strain relation
in terms of stiffness, we have

0, =@ 16+ Q262 + 066

g
=[Qy1=v21Q12+V61 Q16 EL

1
(3.83)

S6=0
(/SOTROPY)

Figure 3.15 Deformed shapes of a
square under uniaxial stress. The
shear coupling coefficients are
negative, zero and positive from
the top to bottom row. Tensile
stress is applied in the left column;
compressive, in the right.

Figure 3.16 Deformed shapes of
squares under pure shear. The
normal coupling induces areal
changes. The coupling coefficients
are negative, zero and positive as
we move from top to bottom.
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Then
Ey =011 121012 + V6,016 (3.84)

If the ply orientation is zero, we recover the on-axis relation of Equa-
tion 1.13 because at this orientation

g
(3.85)
ve: =0
" Then ,
E., =0,,/m (3.86)

where m is defined in Equation 1.13. Note that from Equation 3.84 we
can say for anisotropic material

El 5& Q“/m (387)

In fact, the difference between £, and Q, ; is shown in Figure 3.17.
Similarly, we can show

Ey =042 = 11202, 062026 (3.88)

E¢ =Q66 tv16W61 TV26Us2 (3.89)

The difference between E¢ and Qg is also shown in Figure 3.17.
Off-axis engineering constants provide another insight into the nature
of anisotropic -materials. The highly coupled behavior provides an
excellent opportunity of capitalizing on the unique properties of com-
posite materials not possible with conventional materials. Designing
with composite materials is no longer an extension of that with conven-
tional materials. If we limit ourselves to orthotropic materials, com-
posite materials can be viewed as a special isotropic material. In the
absence of the shear and normal coupling, response of such materials is
intuitively similar to isotropic materials. But as we face fully aniso-
tropic materials with shear and normal coupling, the intuition devel-
oped from working with isotropic or orthotropic materials is no longer
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Figure 3.17 Transformed Young’s modulus and shear modulus of
T-300/5208 unidirectional composite. The data are taken from Table
3.17. Transformed stiffness are also shown for comparison. At 0 and 90
degrees, there is essentially no difference between the two curves. But
significant differences exist in off-axis orientations. The differences
come from the last two terms in Equations 3.84 and 3.89.

valid. New intuition must be acquired. This is the challenge to de-
signers. We must think composites.

7. conclusions

One of the most important features of composite materials is the varia-
tion of properties as the ply orientation changes. The stiffness of an
off-axis unidirectional composite is governed by appropriate stress-
strain relations as before. The functional relationship remains the same.
Although the number of constants have increased from 4 to 6, the
number of independent constants remain the same at 4. The two addi-
tional constants are related to shear and normal coupling.

The shear and normal coupling does not have a counterpart in the
conventional ‘material. The coupling results in more complicated be-
havior. We should take this as an opportunity unique with composite
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materials rather than a liability. It will require time, effort and willing-
ness to face new challenges for us to acquire the confidence working
with anisotropic materials.

We would like to emphasize again the importance of the sign of ply
orientation. Shear and normal coupling changes sign with the ply orien-
tation. A wrong sign will change completely the effect of this coupling.

The concept of the invariants is also very important in composite
materials. The magnitude of the components of stiffness and com-
pliance vary as a function of ply orientation, but the area under the
transformed components remain constant. This constant value is equal
to the particular invariant associated with each component of stiffness
or compliance. The invariants therefore represent the potential of a
component of stiffness or compliance that is embodied in a unidirec-
tional composite. When we go to the laminated composite consisting of
multidirectional plies of a given composite material, we will see that the
invariants of a laminated composite remains the same as that of the
constituent unidirectional plies. In a sense that lamination only changes
the directional properties but does not affect the total potential of
stiffness that a composite material can provide. In the limit we recover
the isotropic material in which case all directional properties disappear.

Engineering constants are useful but are based on measurements
derived from one dimensional tests. Engineering constants are related
directly to the components of compliance which in turn can be derived
from the inversion of the components of stiffness. For an off-axis
unidirectional composite, there is no direct relationship between the
engineering constants and the components of stiffness. The com-
ponents of compliance is the bridge between them. This is different from
the on-axis unidirectional composite shown in Chapter 1 where direct
link between the engineering constants and the components of stiffness
existed.

The variation of the engineering constants as the fiber-orientation
changes can be derived from the transformation of the components of
compliance. The engineering constants themselves are not covered by
any transformation equation. This is a fundamental difference between
the engineering constants, which are derived qualities from the com-
pliance, and the compliance components themselves. There are no
invariants, for example, associated with the off-axis Young’s moduli.
The Poisson’s ratios, the shear and normal coupling coefficients are
dimensionless ratios. They are not governed by any transformation
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equations; they have no invariants; and they are not symmetric. They
are useful for indication of behavior of off-axis unidirectional com-
posites, but their uses are limited because they are fundamentally one
dimensional constants. Since composite materials are normally used in
two dimensional configurations, engineering constants may not be used
directly in many instances.

Effective use of composite materials must not be limited on a re-
placement or substitution basis. Again, the stress-strain relation is
fundamentally the same as the conventional material. It is conceptually
simple. We must learn to take advantage of anisotropy. Do not elimi-
nate it for sake of simplicity.
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8. homework problems

a. Derive the transformation of stiffness of a unidirectional composite
from one off-axis orientation to another.

b. Repeat the process above for the compliance.

¢. Draw the generalized Mohr’s circles for the stiffness of all the uni-
directional materials listed in Table 3.6 on the same scale. Locate the
position for the transformed shear modulus Qgs. How would alu-
minum appear?

d. Show that stress-strain relations of an anisotropic material can be
expressed in terms of the p-g-r and the U’s in the following tables:

table 3.18
stress-strain relations in stiffness
3 9 e
A |UotUse Uzo 2Usg
9 Uzg 2Uso*2U30 2Ura
e | 2Us 2Uy, Uy =2Us,

table 3.19
stress-strain relations in compliance
P G -
Pe  |UstlUys Uszs Uss
e Uzs FUss*2Uss Urs
g /
re Uss Urs 2 Uss—Clss

Show how the tables can be simplified for orthotropic, square-
symmetric and isotropic materials.

e. Find the locations of various key points on the transformed stiffness
curves in Figure 3.7. These points- represent the locations of the
inflection points, extremum values and slopes of tangents.
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Figure 3.18 Key points in the transformed stiffness of T300/5208.

Repeat the process in Problem e for the boron-epoxy composite. Are
there any unusual features for this composite?

Are there bounds for the Poisson’s ratio of an off-axis unidirectional
composite? What happens if fiber stiffness approaches infinity or
matrix stiffness to zero? '

. How can shear or normal coupling coefficients be used to create an

apparent infinite stiffness of an off-axis unidirectional composite

subjected to a biaxial normal and shear stress components (assuming

the other normal component ¢, is zero)?

1) Derive the condition for zero resulting shear strain (66 = 0).
What is the resulting normal strain €, for this case?

2) Derive the condition for zero normal strain( e, = 0). What is the
resulting shear strain €4 for this case?

3) If the applied stress components are:

0, =0g = 100 MPa, 0, =0 (3.90)
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Is it possible to have infinite shear (e, = 0) or infinite normal
stiffness (¢, = 0) for T300/5208? How do you find the ply orien-
tation for each? _

4) Will the glass-epoxy composite work equally well for the stresses
in Equation 3.90?

S)What principles emerge from this problem? Is complete rigidity
under biaxial stress possible?

i. Derive the relationships between the invariants of the stiffness and

those of the compliance for an orthotropic material.

j. Are -there invariants associated with the transformed engineering con-

stants? An average Young’s modulus can be defined from the area
under the transformed Young’s modulus; e.g., in Figure 3.17. What is
the relation between this and that derived from the transformed
compliance (1/U; in Figure 3.12)?

k. What difficulties are involved for testing of an off-axis unidirectional

composite? What is the difference in response between the tubular
and flat specimens with off-axis ply orientation? Examine the cases
of uniaxial extension, pure shear and hydrostatic pressure. What kind
of stresses are induced in the load introduction points (the ends)?
What load and displacement controls are desired for these tests?

l. A quick estimate (the back of an envelope calculation) of the off-axis

stiffness of a unidirectional can be based on only one on-axis stiff-
ness component (the others are zero):

3
Ul ='§Qxx
U, =%Qm (3.91)

‘ 1
Uy =Us = Us =§Qxx

This was shown in-Equation 3.46. The relation is easy to use and can
readily be related to the fiber modulus such as:

Qxx = VfEf (3.92)
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where subscript f refers to the fiber. Using T300/5208 data, estimate
the off-axis stiffness at #/6, /4 and w/3 radians. Show the error
introduced by this estimate with the exact values listed in Table 3.5.
Explain if this estimate works for the compliance components.
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nomenclature

a b, c
E, E,

Ee

1,1,

Va1, V12
Ve1, Ve 2
Vigr>Vae

0

A .

Ratios of engineering constants
Young’s modulus parallel and transverse to an off-axis
unidirectional composite

Longitudinal-transverse shear modulus of an off-axis

unidirectional composite
Linear or first order invariants of stiffness or compliance

cosf, sinf- -

Components of stiffness; i,j = x,y,s or 1,2,6

Quadratic or second order invariants of stiffness or
compliance -

Components of compliance;i,j = x,y,s or 1,2,6

Linear combinations of on-axis stiffness and compliance
in the multiple-angle formulation. Same notation but dif-
ferent combinations are used for stiffness and compliance;
i=1to$

Linear combinations of off-axis stiffness and compliance;
i=1to7 '

On-axis components of stress, i = x,y,s; off-axis, i = 1,2,6
On-axis components of strain, i = x,y,s; off-axis, i = 1,2,6
Longitudinal and transverse Poisson’s ratios of an off-axis
unidirectional composite

Longitudinal and transverse shear coupling coefficients of
an off-axis unidirectional composite

Longitudinal and transverse normal coupling coefficients
of an off-axis unidirectional composite

Ply orientation

Determinant of stiffness or compliance



chapter 4
in-plane stiffness of
symmetric laminates

The stiffness of multidirectional laminates consisting of plies and ply
groups with arbitrary orientations will be described. Those laminates
with midplane symmetry will behave like homogeneous anisotropic
plates. The stiffness modulus of the laminate is simply the arithmetic
average of the stiffness of the constituent plies. We will also show that.
the stiffness properties of bidirectional laminates can vary significantly
and be fundamentally different from conventional materials. Like uni-
directional composites, laminated composites can be described by three
sets of elastic constants. The set consisting of stiffness components
would be the easiest to use because of the simple property relationship
between the laminate and the constituent plies.
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1. laminate code

A multidirectional composite laminate is defined by the following code
to designate the stacking sequence of ply groups:

[05/90,/45/—45,1 ¢ @A)

This code is represented diagrammatically in Figures 4.1 and 4.2, and
contains the following features:

® Starting from the bottom of the plate, at z = —h/2, the first ply
group has three plies of O-degree orientation; followed by the next
group with two 90-degree plies; followed by one 45-degree ply;
and finally the last group with three —45-degree plies. For
symmetric plate, the ascending order from the bottom .face is
identical to a descending order from the top face or z = h/2. But
for unsymmetric laminates, the ascending order will have the
opposite laminate code as the descending order. We have arbi-
trarily decided the use of ascending order for this book.

® The subscript S denotes that the laminate is symmetric with
respect to the midplane or the z = O plane. The upper half of the
laminate is the same as the lower half except the stacking sequence
is reversed in order to maintain the midplane symmetry.

® A subscript T is used to designate the total laminate, without any
omission of the symmetrical upper portion of the laminate. If we
want to describe the laminate in Equation 4.1 using the total
designation, we will have

[03/90,/45/—455/—455/45/90, /03] or 4.2)
[03/90,/45/—454/45/90,/051 1 (4.3)

In the last step, the two middle ply groups with —45 degree ply
orientation were combined into one ply group.

2. in-plane stress-strain relations for laminates

In the derivation of the stress-strain relation of a multidirectional
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z
wz L= G
—————— 90,
_____ 7

= = ] =45 P
= = =1-95
45

________ 7|
-2 E=—--=-=4 G

Figure 4.1 Typical stacking sequence of a

. symmetric laminate. The laminate code as
stated in Equation 4.1 follows an ascending
order from the bottom ply.

z
4
b/Zwll
=75 o35 90" 8(2)
| T
-ns2]

Figure 4.2 Ply orientations as function of z,
This is another representation of Figure 4.1.

laminate, we must make the following simplifying assumptions:
® The laminate is symmetric; i.e.,

0(z) = 0(—2) (4.4)
and i Q;(2) = Qy(—2) (4.5)

Thus, both the ply orientation and the ply material modulus are
symmetric with respect to the midplane of the laminate.

® The strain remains constant across the laminate thickness. We will
use superscript zero to signify the assumed constant in- plane strain
components as follows:

€,(z2)=¢€%
€,(2) = €3 (4.6)

€6(z) = 62
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~Note that there is no z-dependency or z-variation across the
laminate thickness. This assumption is reasonable when the thick-
ness of the laminate is small in comparison with the length and
width and the laminate is symmetric.

Since the stress distribution across the multidirectional laminate is
not constant because the stiffness varies from ply to ply, it is much
easier to define an average stress than an actual stress across the lam-
inate. This average stress can be used to define the stress-strain relation
of the laminate. The stress, in this case, will be the average stress; and
the strain, the in-plane strain in Equation 4.6. We can then calculate the
stress at any ply within the laminate from the in-plane strain. We will
show this later after the stress-strain relation for the laminate is estab-
lished. The average stress is defined as follows:

_ 1 h/2
g, =— 0,dz
hd —nj2
_ 1 hl2
gy =— 0,dz 4.7)
hJ _n2
_ 1 ht2 d
= osdz
6 wJ 6

In Figure 4.3, we show the relationship between the actual stress from
ply to ply and the average stress across the laminate by the averaging
process of Equation 4.7.

Substituting the stress-strain relation for any ply orientation into
Equation 4.7, we have ‘

o, :hl/[Qnel + 0,6, +Qr6€6ldz (4.8)

Substituting the assumed constant strain in Equation 4.6, we have

% =;ll_f[Q1 €7 +Qia€) +Qie6gldz (4.9)
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Figure 4.3 Definition of average
stress. Comparison between the
corresponding components of the
actual ply stress and-the average
laminate stress is shown,

Since the in-plane strain components are independent of .z, we can
factor them out of the integral signs. Only the stiffness components are
left inside the integral because they vary from ply to ply depending on
each ply orientation.

51 = %"[fglldze(lj “"./'ledz‘f(zJ +fQ16dzeg] (4.10)

= ;i—[Ane‘:+Ane2’+A,6e21 @.11)
Similarly,
G, = -;;[A21€(1)+A22€‘2)+A26€g] 4.12)
Ge = 2141l + Agrel + Agee?] (4.13)
where

Ay =/Q1id2, Aaa =fQ22d2y Ay = Aqy,
Ay, =fQ12dZ, A =fQ66dz: A1 =Agy, (4.14)
Ays =fQ16d2- Az =fQ26dZ. Aze = Aga-
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where A;; is the equivalent modulus for a multidirectional laminate.
This modulus is simply the average of the stiffness of the constituent
plies. There is a difference of a length in the physical dimension of
stiffness Q;; in Pa or Nm~2; and that of 4,; in Pam or Nm ™!,

We can further define stress resultants as '

N, = ha,
N, =ho, (4.15)
N¢ = hog

Note the unit of stress resultant is Pam or Nm™!, which is an integrated
stress or force per unit width of a laminate with thickness 4. The
in-plane stress-strain relation for a laminate is actually the stress re-
sultant versus in-plane strain relation. The latter is derived by com-
bining Equations 4.15 with 4.11 et al. We have:

Ny =46} +4;1,€6 + A€
N2 =A‘21€(1) +A22€(2) +A2662 (4'16)

N¢ = Ag €] + Agr€5 + Age€l

This set of simultaneous equations can be inverted to yield the in-plane

strain in terms of the stress resultant. This process is exactly the same as
that described in Chapter 3, Section 5.
Equation 4.16 is based on stiffness of the laminate, and we wish to
find the corresponding compliance by inversion such that
€] =a; 1Ny +a;,N; +a,6Ng
e§=a21N1 +022N2 +‘a26N6 “4.17)
€6 =a¢ Ny +as2Ny + 366N

We show both stress-strain relations in Equations 4.16 and 4.17 in
matrix multiplication tables as follows:
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table 4.1
in-plane stress-strain relation of symmetric
laminates in terms of stiffness

€/ o 520 550
M AII AIZ AI‘
IV? A?I AZZ A?G
/VG 6/ AGZ AG 6

table 4.2
in-plane stress-strain relation of symmetric
laminates in terms of compliance

N, N, N
o
) 9 92 9
°)
< % 22 %6
o
€s s/ sz 66

These stress-strain relations are valid for the in-plane deformation of
symmetric laminates. If stress resultants are given, we can find the
induced in-plane strain immediately from Table 4.2. Then the on-axis
ply strain can be obtained by strain transformation from the initial 1-2
axes to the orientation of a specific ply or ply group. The ply stress is
nothing more than the ply strain multiplied by the on-axis stiffness.
The complete process going from stress resultants to on-axis ply strain
and ply stress is illustrated in Figure 4.4. '
From the compliance in Table 4.2, we can calculate the effective
engineering constants, following the process used in the off-axis uni-
directional composites in Equation 3.68, et al. We will have typically

In-plane longitudinal modulus = EJ = 1
: al lh
1

In-plane shear modulus = £} = ——
ageh  (4.18)
(continues)
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azi
In-plane Poisson’s ratio = v§, = ——
ayq
a
In-plane shear coupling coefficient = vg, = 0—61
11
a
In-plane normal coupling coefficient = »J¢ = :l_‘..(l (4.18)
66
(concluded)

Again we want to emphasize that engineering constants are the con-
stants associated with simple tests such as uniaxial tensile and compres-
sive tests and simple shear tests. They are the results of 1-dimensional
tests and represent 1-dimensional characteristics of laminates. But com-
posites are rarely used in 1-dimensional configuration. The 2-dimen-
sional properties of composites arc much different from the 2-dimen-
sional properties of conventional materials. The coupling coefficients
are large. Their effects are not always intuitively obvious and can result
in opportunities unique with composite materials.

' 1
= I =
= = x
Ny < P ¢
T"/Vs T__’e: N, il o A
B -8B O 2
| / k2 pr .
-‘ l 7 P 7N SN
1‘(*(90/ ?0;/90/

ai/‘ >0’/'

(a) (b) fc) (d)
Stress In - Plane On- Axis On - Axts
Resultants Strain Ply Ply
' Strain Stress

Figure 4.4 On-axis ply strain and stress calculations, From given stress
resultants applied to a multidirectional laminate; we can go from (a) to
(b): use in-plane stress-strain relation in laminate compliance from
Table 4.2. From (b) to (¢): use positive strain transformation in Tables
2.5 et al. The strain’'in Table 2.5 shall be replaced by in-plane strain.
From (¢) to (d): use the on-axis stress-strain relation of unidirectional
composites in terms of stiffness, in Table 1.6.

i
%
H
{
H
1
A
H
i
i
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3. evaluation of in-plane stiffness modulus

We have only mentioned that the in-plane modulus of a multi-direc-
tional laminate is the arithmetic average of the off-axis stiffness of the
individual plies or ply groups. The averaging process is shown as inte-
grals in Equation 4.14. We will now describe the steps needed to per-
form the integrations so that the contribution of the ply stiffness to
the laminate modulus can be defined.

We want to mention again that in the averaging process of our
laminate the modulus in Equation 4.14 is the off-axis stiffness of
unidirectional composites. Using the transformed stiffness in Table 3.3:

Ay = J0y,dz =_/'[Ul + U,c0s20 + Uscosdldz  (4.19)

U, fdz + U, fcosZOdz + U, fcos40dz (4.20)

The U’s for a given composite remain constant. They can be factored
out because they are not dependent on the z-axis.

All =U1h+U2V1 +U3V2 ) ‘ (4.21)
where the geometric factors are:*
h/2
v, = f c0s20dz (4.22)
—hl2
h/2 :
Vo = f cos40dz (4.23)
—h{2

We can repeat the process for other in-plane compbnents.

Ay =UR—U,V, + U, V, (4.24)
Ars = f Qirdz = [ Uy — Uscosdfl az
(4.25)
= Ush — U, fcos40dz ={,h— U3V,

*A more general definition can be found in Equations 6.79-6.82.
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A66 = Ush_U3 V'z (426)

Ave = [ Quedz=f [-—21~U2sin26+ U3sin46] dz

(4.27)
= -% Uz V3 + U3 V4
Aze =—;_—U2 Vs —=U,V, ' (4.28)
where
h/2
Vy = f sin20dz (4.29)
—h/2
h/2
Ve = f sin49dz (4.30)
—h/2

We have seen that the evaluation of the in-plane modulus is reduced to
the evaluation of four geometric factors, defined by the V’s. These
relations can be summarized in a matrix multiplication table as follows.

table 4.3

formulas for in-plane stiffness modulus
of laminates

h 4

&

IS SR N
SN
&S 8 &L
NN N ;
S < X =<
! 1 i
N AN K N NNAS

where the V’s, the geometric factors, can be defined as follows:

hl2
V|1’2,3,4] = f [cos20, cosd8, sin20, sin40] dz 4.31)
—h/2
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There are four Vs that will completely determine the six components
of the in-plane stiffness of a laminate consisting of constituent plies of
the same material; i.e., the same U’s in Table 4.3. There are therefore at
most four independent variables. This will be ‘illustrated again in
Equation 4.33.

A condensed definition of the V’s in Equation 4.31 means that the
numeral in the bracket on the left-hand side applies to the correspond-
ing term on the right-hand side of the equation. The value of V’s is
dependent on the variation of ply orientations in the multidirectional
laminate. It is implicitly assumed that the laminate consists of plies of
the same unidirectional composite. Because sine and cosine functions
are bounded between —1 and %1, the V’s are bounded by the same
limits, as we soon shall see. The similarity between Tables 4.3 and 3.3 is
the result of using the same transformation equations. In the limit when
the laminate has only a ply orientation, we recover Table 3.3 from 4.3
because the integrands in Equation 4.31 are constant. The ¥’ become
simply the trigonometric functions times the laminate thickness:

Vi, = h cos20

V, = h cos40
(4.32)

V3 = h sin20

 Vi=nhsindd

From the formulas in Table 4.3, we have
Ay Az, + 244, = 20U, + Uslh
1

or A12=h[U1+U4]'—5[A11+A22] (4.33)

Similarly Age =A 1, +[Us —Uylh

Thus of the first four in-plane modulus components, only two are
dependent on the stacking sequence. If we know the first two, we can
immediately determine the others without integration. The variation of
the in-plane modulus is constrained by the invariants of the constituent
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ply. The number of degrees of freedom are limited to two among the
four components of modulus in Equation 4.33.

Let us now evaluate the first V' in Equation 4.31. We first normalize
it with respect to the laminate thickness:

V hl2
V=2 -4 f cos26dz
ho h J_nn

(4.34)
Normalization is useful in two aspects; viz., first the V*’s become
dimensionless and are valid for all physical units; SI, English, etc.
Secondly, direct comparison can be made between the stiffness of
laminate and that of the constituent plies. Table 4.4 can be compared
with Table 3.3 component by component. The generalized Mohr’s
circles for the normalized in-plane modulus can be drawn directly over
Figure 3.9 so that the effect of lamination can be illustrated graph-
ically. (This will be done in Figure 4.6.) E

If the laminate is symmetric, we only need to evaluate one
half of the thickness, say, from z = 0 to z = k/2. The new limits of inte-
gration call for a new interpretation of the laminate code as defined in
Equation 4.1. The starting point of the ascending ply sequence has been
reversed from the z = 0 to z = 4/2. Only the upper half of a symmetric
laminate needs to be evaluated. Thus,

h/2
V,*= zf cos20d:z
hJo

(4.35)
Since each ply group is assumed to have the same ply orientation and
material, this integration can now be replaced by summation as we
move from ply group to ply group:

. m./2
Vi= =) cos26,{z; —z,_,].

i=1

m/[2
= Z c0s20;h;

i=1

(4.36)
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where h; = thickness of i-th ply group; where i begins from the mid-
plane. See Figure 4.5 for the definitions of geometric terms.

2 41

J~th Ply Growp | h h/2
Zy i
Zo - - T
Symm. h/2

|

Figure 4.5 Definitions of terms
in a symmetric laminate. The
index for ply group goes from
0 to m/2 when m is the total

" ‘number of ply groups.

Let v; = volume fraction of plies with 6; orientation

2h;/h (4.37)

If each index i in Equation 4.36 represents a unique ply orientation, we
can now substitute Equation 4.37 into 4.36.

m/2
Vl* = z C0820,- Vi
i=1
= v;c0s28, +v,cos28, +vicos20; + ... (4.38)
where vi vy tvs Fooo=1 4.39)

Thus, Vl* is simply the rule of mixtures equation, or the weighted
average of the cos26 functions. Since cosine functions can never be
greater than unity (or less than minus unity), each term in Equation
4.38 is always equal to or less than the corresponding term in 4.39. We
can therefore conclude that Vl* is bounded as follows:
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—1<V/ <1 (4.40)

By applying the identical process to the remaining V’s in Equation
4.31, we can get the following:

VY =vicosdl, +v,cosd8, +vycosdf, + ...
Vi =v,;sin20, +v,sin28, +v,sin26, +... (4.41)
Vi =v,sindd, +v,sindl, +v,sindf, +...

With these simple equations, we can easily compute the in-plane mod-
ulus of multidirectional laminates with any ply orientation. The infor-
mation needed is: the orientation and the volume fraction of each ply
group. Then from Equations 4.38 et al. we can calculate the V*’s. From
Table 4.3 we can compute the modulus for any multidirectional
laminates. . .

When normalized V’s or V*’s are used, Table 4.3 can be rewritten in
a matrix multiplication table as follows:

table 4.4

formulas for normalized in-plane
stiffness modulus

/ U Uy
Ay |y, v "
Azp 7 Y 'V/* V;
A /N Uy -
As N Us -1
A /1 $5* 4
Aos 745" 5

We can now define the linear combinations of the in-plane modulus,
in the same way those of the stiffness of a unidirectional composite are
defined in Equations 3.15 and 3.21.
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Uyalh = 8Lh[3A,, +3A4,, +24,, + 4446]

00 | —

=U1Q

Here subscripts-A -and Q -are added to differentiate the U’s for the
laminate from those for the unidirectional composite.

Similarly, we can show from Table 4.4

Il

Usa/h = Usg

Usa/h = UsQ

1
Urafh = 2-1Ar1 = Az,] = ViU
' (4.42)
Usa /h =-§‘;[A“ + Ay, — 24,1, — 44461 = ViUsg

1 1
Usa /h ='2_h[A16 +A26]~=‘2‘ Vs*UzQ

Usg/h = 'ilh"[Als —Ay6] =ViUsp

We can now derive the two second-order in-plane invariants from
Equations 3.22 and 3.24. These invariants correspond to the radii of
the generalized Mohr’s circles for a multidirectional laminate analogous

- to Equations 3.22 and 3.24, respectively:

RIA z\/UzAz + 4U6,42
=V VI? + V52 Uygh (4.43)
Rialh =/ V¥ + V%2 R,
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Roa =V U2 +U,}
=V V3 + V5 Usgh (4.44)

Raa/h =3/ V¥ + Vit Ry

We can easily show that the square root always has a value equal to or
less than unity.* Therefore, the nornmnalized radii of the generalized
Mohr’s circles for the laminate are always equal to or less than those of
the constituent ply. The square root in Equations 4.43 and 4.44 defines
the reduction in two radii in Figure 3.9 for a T300/5208 multidirec-
tional laminate. This is another indication of the constraints imposed

"~ on laminates by the transformation properties of a unidirectional com-
posite. In-plane modulus cannot be arbitrarily chosen with six degrees
of freedom.

Geometric interpretation of Equation 4.43 can be shown using the

generalized Mohr’s circles for T300/5208 unidirectional composite in
Figure 3.9. This is done in Figure 4.6 when normalized components of
the in-plane modulus are superposed on those of the unidirectional ply.
The radii for the Mohr’s circles for the in-plane modulus are less than
those of the constituent ply. The degree of anisotropy is reduced. The
reduction in the radii is related to the V’s which, in turn, are related to
the stacking sequence or volume fractions of the constituent plies. The
two phase angles in Figure 4.6 specify the starting points in the Mohr’s
circles. These points, shown in solid dots, are determined by the orien-
tation of the reference coordinates of the laminate. The magnitude of
the phase angles can be derived from the geometric relations in
Figure 4.6.

vy

tan28, = 7
' (4.45)

4*

tan46, = 72,;

* Similar to Equation 4.40, we can show that:

Vit Vi + Vit 420 v,c082[0, —0,] +... <[V, + 1, Fyy 4.0 ] <1

s D
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Figure 4.6 Generalized Mohr’s circles for T300/5208 uni-
directional composite and normalized in-plane modulus of
a laminate. :

The relations here are also shown in Appendix A. The existence of a
symmetry axis is very important to the behavior of composite mate-
rials. For unidirectional composites orthotropic symmetry exists when
both shear coupling terms vanish simultaneously. This occurs along the
horizontal axis in Figure 3.9. For the in-plane modulus of a laminate to
have orthotropic symmetry, the phase angles above must be equal.
Then by rotating the reference coordinate axes we can always have the
starting points in Figure 4.6 along the horizontal axis. The most
obvious case for the in-plane modulus to be orthotropic is for the phase
angles equal to zero, then '

4. cross-ply laminates

We will now examine some commonly encountered symmetric lam-
inates and determine the values of their in-plane stiffness and
compliance.

First, we will study cross-ply composites. The ply orientations are
limited to 0 and 90 degrees. In Table 4.5, all the values of the trigono-
metric functions which will be needed are listed.
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table 4.5

values of trigonometric functions for cross-ply laminates

9; cos20, cos40; sin20; sind6;
0 1 1 0 0

90 -1 1 0 0

Substituting these trigonometric functions into Equation 4.38, et al.,
we have

* _ —_
Vi =vo Yoo

VE=ve +vgo =1

Based on the condition specified in Equation 4.45, this laminate is
orthotropic. By taking these values and putting them into Table 4.4, we
will have the normalized in-plane modulus for cross-ply composites as
functions of volume ratios. This is done in Table 4.6 where matrix
multiplication is implied.

table 4.6

formulas for in-plane stiffness modulus for
cross-ply composites

/ U A
A, /h Y, Vo~ Vso /
Azt Y Yo Yo /
a6 | v, -/
Ags’h Us -/
A = Aze =0

Note that only the first two components are affected by the volume
fractions of the constituent plies in the laminate. The remaining four
components are constant or zero. Cross-ply laminates are orthotropic
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because the shear coupling terms are zero. If we substitute the defini-
tions of the U’s from Equation 3.15 into the last two equations in
Table 4.6, we will have:

Ai/h=Us —U; = Qxy
: (4.46)
A66/h=U5_U3=QSS

Following are some numerical examples of the in-plane stiffness and
compliance of cross-ply laminates. T300/5208 will be used as our
sample material. The elastic modulus in terms of the U’s is listed in
Table 3.6. Combining the modulus data with the formulas in Table 4.6,
we arrive at the following expressions in GPa:

All/h = 7637 + [Vo _V90]85.73 + 19‘71
Azz/h = 76-37— [Vo —V90]85.73 +19.71

Ayy/h = 22.61—19.71 = 2.90 (4.47)

Age/h = 26.88—19.71 = 7.17
Ajg =Az6 =0

The results from these equations are plotted in Figure 4.7, using the
volume fraction of 90-degree plies as the abscissa. Note that the rule of
mixtures relations apply in the first two components. Both are linear. -
The other two nonzero components in Equation 4.47 are constant for
all volume fractions.

We calculate the compliance components by inverting the stiffness at
a given volume fraction. The inversion process though must be repeated

- for each fraction. Let us take the volume fraction 50 percent. The

modulus components are, in GPa:
Al l/h = A22/h = 96.08, A’ 2/h = 2.90, A66/h =7.17 (4.48)

Using the matrix inversion method described in Equations 3.64 and
3.65, we have the following solutions where we substituted the in-plane
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Figure 4.7 In-plane stiffness and compliance of cross-ply composites. The Poisson
and shear components are constant and independent of volume fractions; the normal
stiffness components are linear but the compliance components are not.

components of the laminate for those of the unidirectional:
AA;; = 66.126 X 10°%43 (Pa)?
a;1h=a,,h =10.41(TPa)™!
a; ,h=—0.3141 (TPa)! (4.49)
agsh= 139.44 (TPa)"!

Qg =a6=0

Typical values of cross-ply laminates are listed in Table 4.7. If our
laminate has 16 plies with the following unit ply thickness of:

n, 125 X 1076

| (4.50)
16k, = 2X 1073
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Representative unnormalized components of the in-plane stiffness and
compliance of this laminate are:

96.08h = 192.16 MNm !

All
(4.51)

]

a;, = 10.41/h=5.205 (GN/m)"!

table 4.7

normalized in-plane stiffness and complianbe of T300/5208 cross-ply laminates,
GPa and (TPa) ~, respectively.

An/h Azafh  Aya/h Ags/h  A16=Azs
[0/90] 96.08 96.08 289 7.17 0
[0,/90] 124.65 67.50 2:89 7.17 0
[04/90] 147.51 44.63 2.89 7.17 0
[0s/90] 162.75 29.39 2.89 7.17 0

ay,h azzh a:h @gsh 81602
[0/90) 10.41 1041 —314 139.47 0
[0,/90] 8.03 14.82 —.344 139.47 0
[04/90] 6.78 22.43 —.440 139.47 0
[0s/90] 6.15 34.07 —.606 139.47 0

Because of the constraints imposed on the in-plane modulus by the
invariants of the constituent ply cited in Equation 4.33, cross-ply lam-
inates can have only one variable. Of the six possible components of
in-plane modulus, the shear coupling terms are zero. Of the remaining
four, the Poisson and shear components are fixed by the respective

" components of the constituent ply. Of the remaining two normal com-

ponents, only one can bec free because the sum of these components
must be invariant; i.e.,

[A,, +Ay,1/h =96.08 + 96.08 = 124.65 + 67.50 ... = 192.16

Thus the only degree of freedom is the value of one of the components
above. There is an additional constraint implicit for all laminates; i.e.,

ny <‘411/’7<Qx,x
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From the compliance components, we can get the following engi-
neering constants using Equation 4.18:

ES 1/10.41 = 96.0 GPa

E? =1/139=7.17GPa (4.52)
9, = 0.3141/10.41 = 0.0301

Since cross-ply laminates are orthotropic, we could have calculated and
obtained the same engineering constants in Equation 4.52 from those
in-plane modulus components in Equation 4.48 directly using the rela-
tions in Equation 1.13.

A Jh
E° = g‘_‘ =1
m m
A A -1 2 =1
where m = [1———‘3——2—‘] =[1—i02-] = 1.001
Ay Aza 96.08
' 96.08 _
th o — 287° =96.0GPa 4.53
ek 1.001 (4.53)

This agrees with the longitudinal modulus in Equation 4.52.
The constraining effect of the 90 degree ply is responsible for the
low Poisson’s ratio. The value of m is almost unity, therefore

All/h zE?

This is true only for cross-ply composites. As we have seen Equation
4.47 follows the rule of mixtures relation. We can then say the E9 will
follow approximately the same relation. This simple relation will hold
for laminates only if they are orthotropic and have very small effective
Poisson’s ratios. '

b. angle-ply laminates

Angle-ply laminates form another very common class that deserves
special attention. In this class, there are only two ply orientations

RN
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which have the same magnitude but opposite signs. The laminate is
balanced when there are equal numbers of plies with positive and nega-
tive orientations.

Thus for angle-ply laminates we have:

6, = +¢,0, =—¢

(4.54)
1
and Vi = v, = 2
Substituting these values into Equation 4.38 et al.,
V= %(cos2¢ + cos2¢) = cos2¢
V3 = cosd¢ (4.55)

V= Vi=0

This laminate is orthotropic because of Equation 4.45.
The formulas for the in-plane modulus for angle-ply laminates are

_listed in Table 4.8, where.matrix multiplication is implied. They are

obtained by substituting the values from Equation 4.55 into Table 4.4.

Note that the first four rows of this table are identical to those in
Table 3.3 for the unidirectional modulus except where the ply orienta-
tion 8 in Table 3.3 is replaced by the angle ¢ in the angle-ply laminate.
The shear coupling terms vanish for the angle-ply laminate because of
the last line in Equation 4.55.

table 4.8
formulas for in-plane stiffness modulus for
angle-ply laminates

/ Y Y
A, /h 7 cas2¢ cos4 ¢
B RV T A -cos2¢ cos4g’
As/h U, —cos 4
Agsh Y -cos4g |-

AIO' :A25 =0
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Because of the similarity between this table and Table 3.3, we can
immediately convert the numerical results for T300/5208 in Figure 3.5
by simply replacing 8 by *¢ and deleting the shear coupling terms. The
comparable components of in-plane modulus for T300/5208 angle-ply
laminates as functions of *+¢ are equal to those in the first four columns
in Table 3.5. The last two columns are zero.

For [45/—45] angle ply, we have

cos2¢ =0, cosd¢p = —1

Using the data for T300/5208 from Table 3.6, we have from the
formulas for in-plane modulus in Table 4.8

Ay /h = Ay, /h =17637—19.71 = 56.66 GPa

Ai,/h =22.61 +19.71 = 4232 GPa
_ (4.56)
Age/h = 26.88 + 19.71 = 46.59 GPa

Aye =A26 =0

With the exception of these shear coupling terms, these values are iden-
tical to those for § = 45 degrees in Table 3.5. The in-plane modulus of
angle-ply laminates is listed in Table 4.9 and plotted in Figure 4.8.
Using the inversion method applied in Equation 3.65, we have for the
[45/—45] from Equation 4.56:

AA

Il

i 66.126 X 103943 (Pa)3
aj h =ayh =39.91 (TPa)™!
aj,h = —29.81 (TPa)™* (4.575
ageh = 21.46 (TPa)™
a,6 =ay¢ =0(TPa)™
These compliance values together with those for other values of ¢ are

listed in Table 4.9 and are shown as solid lines in Figure 4.9. The
dashed lines are the transformed components of the compliance of

s e 2
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unidirectional composites taken from Figure 3.11. The big difference
between the two lines (dasizzd versus solid) is due to the matrix inver-
sion with or without the shear coupling terms. The off-axis uni-
directional composite is anisotropic and the angle-ply laminate is
orthotropic.

table 4.9
normalized in-plane stiffness and compliance of T300/5208
angle-ply laminates, GPa and (TPa)~ !

*¢ Apr/h Az2/h Aya/h Ags/h  A1s=Az6
0 181.8 10.3 2.90 7.17 0

15 1604 . 119 12.75 17.02 0

30 1093 - 23.6 32.46 36.73 0

45 56.6 56.6 42.32 46.59 -0

60 236 109.3 3246 ©36.73 0

75 11.9 160.4 12.75 17.02 0

90 10.3 181.8 2.90 7.17 0
£ ay1h aza2h ayzh ageh a16=a16
0 5.52 97.08 — 1.54 139.47 0

15 6.80 91.21 — 7.24 58.73 0
30 1542 71.36 —21.18 27.22 0

45 3991 3991 —29.81 21.46 0

60 71.36 15.42 —21.18 - 2722 0
75 - 91.21+ -~ 6.80- i L - --58.73 0-
90 97.08 5.52 1.54 139.47 0

The engineering constants for off-axis unidirectional composites will-
also be completely different from those for angle-ply laminates. The
engineering constants for ¢ = 45 degrees, which is simply the
*+45-degree angle ply, can be obtained directly from the results in
Equation 4.57 using the relations in Equation 4.18:

E? =E{=1/a,,h=39.91"" =25.05 GPa

E2 = 1/ageh =21.461 = 46.59 GPa (4.58)

v?1 = —a,,/a,, =29.81/39.91 = 0.746
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Figure 4.8 In-plane stiffness of angle-ply laminate of T300/5208
composite. With the exception of the non-zero shear coupling com-
ponents, the curves above are identical to the transformed modulus of
unidirectional T300/5208 shown in Figure 3.5 where the coordinates
are defined in the parenthesis. The curves here are the laminate stiffness
as a function of lamination angle ¢.

The corresponding engineering constants for an off-axis unidirectional
T300/5208 were calculated from the data in Table 3.12:

E, =E,=59.75"=16.73 GPa
Es = 105.7"' =9.46 GPa (4.59)
vy, = 9.99/59.75 = 0.167

Compare like constants in Equations 4.58 and 4.59; we see that the
values for angle-ply laminates are much higher than the off-axis uni-
directional. The Poisson’s ratios of 0.746 exceed the upper limit for
isotropic materials, which is 1/2. This is theoretically admissible for
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Figure 4.9 In-plane compliance of T300/5208 angle-ply laminates. The
solid lines are based on the data in Table 4.8, and are not transformation
curves. The dashed lines, taken from Figure 3.11 are the transformed
components of compliance of the same unidirectional composite, with
the coordinates defined in parenthesis; i.e., § vs S;.. Close similarity
between Aij/h and Qii does not exist between g;;h and S;;. The shear
coupling components are responsible for the differences {)etween the
solid and dashed lines.

non-isotropic materials. The comparison of these engineering constants
between off-axis unidirectional and angle-ply laminates as functions of
ply orientation 6 and lamination angle +¢ are shown in Figure 4.10.
The significant increase in the angle-ply laminates over that of the
off-axis unidirectional over the entire range of angles is very apparent.
The increase is caused by the constraining influence imposed on each
ply within a laminate. The plies are bonded together and are not free to
deform independently.

There is an important message here. Laminates are governed by very
rigorous conditions such as those in Equation 4.6. Laminates cannot be
modeled by a one-dimensional arrangement of parallel springs. Plies
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within a laminate are constrained and interact with one another. It is
not always intuitively obvious when we add or subtract plies from a
laminate if we are actually helping or hurting the stiffness and the
strength. The key is to understand the ply-to-ply interaction and to
adhere to the mathematical models faithfully.

Poisson's  Ratio

!
\\

15071

Shear Moaulus, GPa

100
£t B
Gon(&)

50T

Figure 4.10 Comparison between engineering constants of angle-ply and unidirec- -
tional composites. The variations of these constants are shown as dashed and solid
lines. The dashed lines are identical to the solid lines in Figure 3.17.

6. quasi-isotropic laminates

If the following conditions for the in-plane modulus of a laminate are
satisfied, the laminate is quasi-isotropic:

A = Az,

A1g =A26 =0 (4.60)
_1 —4

Ags “2'[1411 121
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The last relation is analogous to that for the on-axis stiffness in
Equation 1.23. With the last constraint we have one less degree of
frcedom than the cross-ply laminate cited in Table 4.7. We have no
freedom at all! If we construct a quasi-isotropic laminate out of a given
material ‘its normalized in-plane properties are predetermined. We
cannot change them unless we use a different material. There are
numerous stacking sequences for this laminate.

Intuitively, if ply orientations are random, we would expect an iso-
tropic laminate. Directionality would disappear. For example, chopped
fiber composites are quasi-isotropic. If we examine Equation 4.31,
which defines the V’s, it is reasonable to expect these geometric
factors to vanish. Physically, when there is equal probability of
fibers oriented in any direction, or there is a continuous variation in
fiber orientation, the cyclic terms in Table 4.3 as defined by the Vs
will vanish. The in-plane modulus components will converge toward the
invariants- in the first column of the table. The in-plane modulus
becomes:

Ay /h=A4,,/h=U,
AlZ/h = U4 (46])
Ass/h=Us

The conditions for isotropy in Equation 4.60 are satisfied because of
the relations between the invariants as described in Equation 3.20. We
have a quasi-isotropic material. v

Since this is an isotropic material, we can find the quasi-isotropic
engineering constants, as follows:

From Equation 1.13,

_ Ay _ U

A4, U

v, =V

'y x =V

ES = G=A66/h=U5

(4.62)
From Equation 1.23,

Us
E = 201+v)G=2 [1+-(7--:,U5

1
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If we use the values of U’s for T300/5208 from Table 3.6, we have
v = 22.61/76.37 =0.296
G = 26.88 GPa (4.63)
E =2(1+0.296)26.88 = 69.67 GPa

There are other than random orientations that will produce quasi-
isotropic laminates. Let us examine the following two laminates:

(0/60/—60]g, and [0/90/45/—45]

For the first laminate, we have from the definitions of ¥ *’s in Equation
438 et al.,

vy =, =vs =§

v =-:IJ;[COSO + cosl20 + cos(—120)] =0

v =%[cosO 4 cos240 + cos(—240)] =0 (4.64)
vy = %[sinO + sin120 + sin(—120)] =0

v =%[sin0 + sin240 + sin(—240)] =0

For the second laminate, we have:

1
4

Vi T Ve TVy TV =

V¥ =—_[cosO + cosl80 + cos90 + cos(—90)] =0 (4.65)

1
4 - (continued)

in-plane stiffness of symmetric laminates 145

vy = % [cosO + cos360 + cos180 + cos(—180)] = 0
v =%[sin0 + sinl80 + sin90 + sin(—90)] =0
v =%[sin0 + §in360 + sin180 + sin(—180)] =0  (4.65)

(concluded)

Since all the Vs are zero, the laminates are quasi-isotropic. In fact, we
can generalize that any laminate with “m” ply groups spaced at ply
orientations of Pi/m radian will be quasi-isotropic. In the first case we
had m = 3; in the second case, m = 4. Moreover, with symmetric
laminates we must double the number of ply groups within a quasi-
isotropic laminate. The minimum number of plies are 6 and 8, respec-
tively. The first laminate is also called Pi/3; and the second Pi/4. For
quasi-isotropic laminates we have no freedom because the stacking
sequence is fixed and the resulting stiffness is also fixed.

There is a very practical reason for quasi-isotropic laminates beyond
being isotropic like conventional materials. This configuration repre-
sents the minimum performance that we can expect from a composite
laminate. If we are uncomfortable in dealing with directionally varying
properties; we can always use the quasi-isotropic laminate. A direct
substitution of this laminate for the conventional material can be done
without hesitation because this substitution is no different from the
substitution of conventional materials.

The quasi-isotropic - Young’s modulus of T300/5208, as listed in
Equation 4.63, is equal to the Young’s modulus of aluminum. But there
is a minimum of 40 percent savings in weight. When directionality is
judiciously added, the advantages of composites are overwhelming.

The quasi-isotropic laminates can be used as the starting point of
optimization of ply orientation. If minimum weight is a criterion, the
quasi-isotropic laminate should be the upper bound of the weight. An
optimized material taking full advantage of the directionality of proper-
ties should only have lower weight than the quasi-isotropic con-
figuration,
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7. general Pi/4 laminates

This is a family of laminates having four ply orientations spaced at
45-degree intervals. The normal Pi/4 laminates have four ply groups
with equal thickness and are therefore quasi-isotropic. General Pi/4
laminates refer to those with arbitrary thicknesses in ply groups, includ-
ing the limiting cases of zero thickness for one or more ply groups. We
will now list all the trigonometric functions and their values for our ply
orientations in Table 4.10.

table 4.10
values of trigonometric functions for in-plane modulus of
general Pi/4 laminates

0, cos20, cos4d; sin26; sind6;
0 1 1 0 0
90 -1 1 0 0
45 0 -1 1 0
—45 0 -1 -1 0

Substituting these values into Equation 4.38 et al., we have
V;k =Ve T Voo

* —_ —
Vy =vetveo —vas —v

T4 (4.66)

* —_
Vi=vas —v_ s

Vi=0

With these values, the formulas for in-plane modulus in Table 4.4 can
be specialized for our general Pi/4 laminates. This is done in a matrix
multiplication table as follows. Note when all the v’s are equal, we
recover the quasi-isotropic laminates. When the *45-degrec plies are
zero, we recover the formulas for cross-ply laminates listed in Table 4.6.
When we have a special angle-ply laminate with the lamination angle ¢
equal to 45 degrees, we recover from Table 4.11 the special £+45 lam-

'inate from Table 4.8. Finally, Pi/4 laminates are orthotropic when the
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45-degree plies are balanced, or when
Vas =V_ 46 (4.67)

When this is true, the shear coupling components become zero.

table 4.11

formulas for in-plane stiffness modulus of
general Pi/4 laminates

/ % U

A/ h Y Yo %o Vo TVag Vas Vees
AP Y “otveo Y o Vs TVgs
Ao U, TV Voo s TVgs
Ase/h Us Vo Voo Flas TVes

/
As/h ?/"45"/-45/

/
At 2 / "45‘1’-4.?/

The formulas in Table 4.11 can be represented by a series of
diagrams or plots. First of all, the components of stiffness are all linear
functions of the ply fractions. The components are proportional to four
linear combinations of the ply fractions; viz., vy, vgq, vas +v_4s and
vas — v_,5. In Figure 4.11 we show the in-plane modulus of general
Pi/4 laminates for T300/5208 composite. The first chart shows
component A,,/h. This chart is valid for balanced as well as un-
balanced laminates; i.e., independent of the values of v45 and v_ .
The same can be applied to the second chart on components 4, , /A and
Age/h. Component 4,,/h is not shown because it can be found by
interchanging v, with vy from the A4,,/h chart. Only in unbalanced
laminate (that is the +45 has a different number of plies from the —45)
will the last chart in Figure 4.11 become necessary.

The open hexagon in each diagram represents the properties of the
quasi-isotropic laminate. Note all relationships in Table 4.11 are de-
scribed by straight lines. This did not happen by accident. In fact, it is
important. to choose the correct parameters so linear relationships exist
between the ply and the laminate properties. The correct property set
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Figure 4.11 In-plane modulus of general Pi/4 laminates of
T300/5208 composite. Quasi-isotropic points are shown as
open hexagons.

for the stiffness of a laminate is the stiffness modulus of the unidirec-
tional composites. If another property set is chosen, nonlinear relation-
ship would result. For example, when the property set of engineering
constants is chosen, the straight lines in Figure 4.11 will be replaced by
curved lines. In fact the curved lines have been referred to by a trade

name: the carpet plot. The moral of the storyis that stiffness modulus is
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the simplest property for the description of the stiffness of laminated
composites. The carpet plot is an unnecessarily compllcated way of
showing properties of composites.:

8. general bidirectional laminates

We have seen earlier two classes of bidirectional laminates, viz., cross-
ply and angle-ply laminates. Both laminate classes are orthotropic. We
have seen unique properties of laminates that do not have a counterpart
in conventional materials, For example, the in-plane Poisson’s ratio,
shown in Figure 4.10, extends beyond the upper limit of 1/2 imposed
on isotropic materials. While orthotropic materials can be viewed as a
simple extension of conventional materials, nonorthotropic materials,
however, must be viewed from a completely different viewpoint. We
must understand the unique properties of anisotropic materials and
learn to capitalize on these properties to perform functions not possible
with conventional materials. In this section, we will illustrate how
simple, unique properties can be derived from general bldlrectlona]
laminates.

A general bidirectional laminate consists of two arbitrary ply orienta-
tions and ply ratios. In Figure 4.12 we show the two orientations. The
two orthogonal bisectors would be the symmetry axes if the two ply
orientations are balanced;i.e., the ply ratio is unity.

T~ .

/.
/

\

Figure 4.12 Orientations of general
bidirectional laminates.
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In terms of the angles shown in Figure 4.12, we have

0, = v—¢
(4.68)
0; = v+¢
We will introduce another variable:
. Vi
p = ply ratio=— (4.69)
Vo .

where the v’s are the volume fractions of ply orientations. This was
defined in Equation 4.37. From Equations 4.38 et al., we can imme-
diately define for all bidirectional laminates.

V¥ = v, cos20, + v,cos20,

Vy = vycos48, + v,cos4d,

(4.70)
VY = v,sin20, + v,sin26,
VS = v,sind@, + v,sindf,

We have a general cross-ply laminate when:
¢ = 45 degrees 4.71)
By combining this with Equations 4.68—4.70, we have
Vi = (vi —vy)sin2y
Vy = —cosdy
4.72)

V3* = —(v; —v,)cos2y

vy -—sindvy

This is an off-axis cross-ply laminate. The rigid body rotation of the
laminate is specified by 4. This laminate becomes the usual cross-ply
laminate when

v = 45 degrees 4.73)
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Equation (4.72) becomes:

V= vi—v,
vE =1 (4.74)
Vi= V{=0

We have recovered the formulas in Table 4.6.
We have a general angle-ply laminate when:

y =0 BCAON

We can easily show by combining this with Equation 4.68 et al.

V¥ = cos2¢
V2* = cos4¢

(4.76)
Vi = —(vy —vy)sin2¢

VY = —(v, —v,)sindo

This is a general angle-ply laminate when it is not balanced. When we
have a balanced laminate, ) |

vy —vy, =0 4.77)

Then E quation 4.76 becomes the same for the usual angle-ply laminate
shown in Table 4.8. It is intuitively obvious that the magnitude of the
shear and normal coupling is related to the degree of the imbalance.
Equation 4.77 is still a rule of mixtures relation that goes from +1 to
—1 with zero at the midpoint.

As an illustration of the range of properties for a general bidirec-
tional laminate, we take:

¢ = 30 degrees
v = —90to 90 degrees . (4.78)
11
= Or—a—: ls4s 9s°°
p 94
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Note the two limiting values of the ply ratio correspond to unidirec-
tional composites with +30 and —30 degrees orientations, respectively.

For the complete characterization of the stiffness of a symmetric
laminate, the following material constants are useful for various
purposes.

1. Six normalized components of stiffness: A;;/h
2. Six normalized components of compliance:'ail-h
3. Two Young’s modulus: EY, ES

4. Shear modulus: £?

5. Two Poisson’s ratios: v5, and 19,

6. Two shear coupling coefficients: ¥3, and v%,

7. Two normal coupling coefficients: ¥{ ¢ and V5 ¢
8. One ratio of Young’s moduli: « = E{/EY

9. Two ratios of Young’s to shear moduli:

We must keep in mind that not all the elastic constants above are
independent. From Equation 4.33 we can conclude that there are at
most four independent constants among the six components of the
in-plane modulus. Thus, it is safe to say that we cannot manipulate the
elastic constants of a laminated plate at will. . There are constraints.
When we increase one constant such change will induce other changes
in accordance with the law of transformation and its invariants.

We will show the variations of some typical elastic constants of
general bidirectional laminates. The material used is T300/5208. The
definition of the angles follow those in Figure 4.12. The ply ratio p as
defined in the Equation 4.69 is also shown of each of the following
figures:

1. A typical component . of stiffness is shown in Figure 4.13 (top).
This is a shear/normal coupling component. The two limiting cases
which correspond to the ply ratios of infinity and zero are the upper/
lower bounds of the component of the stiffness. Furthermore, the
usual lever rule for phase diagrams applies. This is not surprising
because the stiffness component of a laminated composite is ob-
tained by a straight averaging or the rule of mixtures relation.

2. A typical component of the in-plane compliance is shown in -

Figure 4.13(bottom). The same notation used in the previous figure
applies. Note that the compliance components as a result of the
changes in the ply ratio are essentially bounded by the two limiting
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Figure 4.13 Typical components of stiffness and compliance of
T300/5208 bidirectional laminates.

cases. There are exceptions but the difference is very small for this

~ material. There is, however, a very drastic change in the magnitude of

the component of compliance as one goes from all —30 degree uni-
directional ply (p = infinity) to the case where the ply ratio becomes
9/1. In other words, a 10 percent change in the ply orientation can
result in over 100 percent changes in the resulting components of
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compliance. The lever rule is not applicable for this component. The -e/o
range of variation for this component covers both the positive and 200r EI ' (GPa) i :;;?:
the negative values. This can provide complete reversals in the X t4/1)
response of materials if it is so desired. 3 E};ii
3. The longitudinal Young’s modulus for a general bidirectional ; :é;?i
laminate is shown in Figure 4.14(top). The magnitude of the ® =30

modulus is no longer bounded. Needless to say the léver rule will not
apply either. The magnitude remains positive which is required for
the diagonal terms in the stiffness matrix in order to insure material
stability.

4. The ratio of the Young’s to shear moduli is shown in Figure
4.14(bottom). This ratio is a measure of the bending stiffness to
shear rigidity. This ratio is often referred to as the Ef/GJ where / and
J are moments of inertia of the cross-section of a structure, and F . " . . ‘ ‘
and G are the Young’s and shear moduli of the material. Note that - -e0 -30 0 0 60 90
the ratio is essentially bounded by the limiting cases although the
lever rule does not apply. Wide variations of this ratio are possible by
changing the ply ratios or ply orientations. This component remains
positive as its required from the stability standpoint.

5. The longitudinal Poisson’s ratios is shown in Figure 4.15(top).
This ratio is no longer bounded by the limiting cases. Poisson’s ratios
can be zero as well as negative which is not permissible for the
conventional material. Note the steep descend of the ‘Poisson’s ratio
ncar 30 degrees, a small change in angle can result in great changes in
this ratio. Further, the ratio near this angle is insensitive to the
change in ply ratios as we go from 1/1 to 9/1.

6. The normal coupling coefficient is shown in Figure 4.15(bottom).
. . . iall limiti .
This coefficient is essentially bounded .by th.e 1m1t'mg ca.ses' The Figure 4.14 Longitudinal Young’s modulus and the ratio of extension to shear
lever rule however does not apply. There is, again, a wide variation of modulus of T300/5208 bidirectional laminates, :
the magnitude of this coefficient covering both the positive and

negative values. Again, near 30 degrees this coefficient is insensitive . . R . . . .
to the changes in ply ratios, for example, as we go from zero to linearized as shown in Figure 4.11. Such simple, linear relationships no
longer exist in the case of the components of the compliance and the

infinity. . engineering constants. It is very difficult to bound or visualize the
We have just displayed some typical examples of the elastic constants magnitude of the change as we change ply orientation or ply ratios.
of general bidirectional laminates. It appears that only the components Whatever methodology or algorithm is used for the design and optimi-
of the stiffness can be readily anticipated in that the rule of mixtures zation, we must appreciate the possible variations of the elastic behav-

equation and the normal lever rule apply. The “carpet plot’ is : ior as the laminate becomes fully anisotropic. Both ply orientation and
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Figure 4.15 Typical coupling coefficients of T300/5208 bidirectional
laminates.

ply ratio are variables. These figures are intended to demonstrate the
range of variability and ‘the sensitivity as a function of stacking se-
quence for typical bidirectional laminates.

It is difficult to characterize multidirectional laminates with three or
more distinct ply orientations. It appears safe to say that as the number
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of ply orientations increase, the resulting elastic constants will approach
those of the quasi-isotropic laminates. Should this be the case bidirec-
tional laminates are unique because they can provide the widest varia-
tion of properties. These laminates can have properties with greater
variations than the unidirectional constituent plies.

9. ply stress and ply strain analysis

Following the process outlined in Figure 4.4 we can readily calculate
the stress and strain at any ply within a symmetric laminate under
arbitrarily applied stress resultants, The motivation for the determina-
tion of the stress and strain at a ply level is for the assessment of ply
failure., In a multidirectional laminate subject to in-plane strains or
stress resultants it is necessary to examine ply by ply or ply group by
ply group to determine if any of them has failed or about to fail. The
failure criterion for the plies will be covered in Chapter 7. We are only
outlining the method for the ply stress and ply strain analysis which is a
prerequisite for the eventual failure determination.

~ We will now list a few simple examples.

1. Determine the ply stresé and ply strain of a T300/5208 [04/904] ¢
laminate subjected to a uniaxial stress resultant of 1 MN/m.

From Equation 4.50 and Table 4.7, usihg unit >ply thickness of

125 X 10~ ®m. ,
h =16X 125X 10% =2X 103 m
a;, =10.41/2 X 1073 = 5.21 (GN/m)~!
v (4.79)
a,; =—=314/2X 1073 =—.157 (GN/m) !
agy =0
From the stress-strain relation of Table 4.2
€ =521x%107
€ =—157X1073  (4.80)
ee =0
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For the O-degree ply, the on-axis stress and strain are: We can recover the stress resultants given originally:
e, = 5.21x1073 N, = 6,h=500X2=1MN/m
(4.86)
€ = —.157 X 1073 (4.81) N, = Ng=0
e = 0 _ If we use the maximum strain failure criterion (Problem h in
Chapter 1) which states that failure occurs when:
From the on-axis stress-strain relation of Table 1.6 and the '
modulus in Table 1.9, 1. € >8X10"% or
— - = - S e R (4.87)
o, = 181.8 X5.21—2.89 X.157 =946.7 MPa . 2. €, >4X 1073
o, = 2.89 X 5.21 —10.34 X .157 =13.4 MPa (4.82) _ Examining the on-axis strains, we can conclude that the 90-degree
ply has failure because
oo = 0
5.21>4 (4.88)

For the 90-degree ply, the normal strains are interchanged:
: In fact, the 90-degree ply failed when the applied stress resultant is

e, = —157X1073
4
N =1 X—=.76TM 4.89)
e, = 521X107 (4.83) 1(FPE) 5.21 N/m (
e, = 0 ‘ where subscript FPF refers to the “first ply failure™ stress level.
The second or ultimate ply failure will occur when the 0-degree
o, = —181.8X.157 +2.89 X 5.21 =—13.4 MPa ply fails. Using the same failure criterion, the ultimate stress re-
’ sultant is
o, = —2.89X.157+10.34 X 5.21 =53.41 MPa  (4.84)
N =1x2 —1s3MmMN/m 4.90
o, = 0 1(max) 521 1.53 MN/m ( )
We can compute the average stress to verify equilibrium: ; 2. Examine the same cross-ply laminate under compressive loads and
determine the first and ultimate failure stress resultants or average
g, = %(946.7 + 53.41) = 500 MPa stresses.
Assuming that the maximum strain failure criterion
0z = 0 | (4.85) | ~ e.|> 7x10° (slightly less than tensile strain)
_ : : 4.91)
Gy = O

] - €y| > 20X 1073  (much more than tensile strain)
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For the 90-degree ply, the induced strains have opposite signs,

Ny = 1 ng7= 50.9 MN/m, (tension), or

(4.92)

i

N, 1 X 32—20—1 = 3.83 MN/m (compression)

For the O-degree ply,

Ny, = 1X §12_1 = 1.34 MN/m, (compression), or’

(4.93)

4

N, 1 X 57 = 25.4 MN/m (tension)

Note the first-ply failure now occurs in the O-degree ply at an

average stress of

G, ppry) = 134/2X 107 =672 MPa
(4.94)
Oi(max) = 3.83/2X 107 =1910 MPa

. Determination of shear stiffness from a 45-degree angle-ply
laminate.

For our laminate, we know from Equation 4.57,

a; lh = 39.91 (TPa)'l
a,,h = —29.81 (TPa)™ (4.95)
(17 %1 = 0

Under a uniaxial stress of

5, = 100 MPa (4.96)
€® = 39.91 X 100 =3.99 X 10
€0 = —29.81 X 100 = —2.98 X 1073 (4.97)

€6 = 0
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If we tfansform both the stress and strain -——45 degrees, and call
the new axes 1’ and 2', from Table 2.1,

o, = 0, =50 MPa

(4.98)
s’ = 50 MPa

From Table 2.5,
€' = %(3.99—2.98) = .50 X 107
€ = € ' (4.99)

€g' = 3.99+2.98=6.97 X 1073

In the 1'-2' coordinate system, our laminate is a cross-ply laminate
subjected to the stress and strain above. Since the stress-strain
relation is orthotropic, the shear components in stiffness and com-
pliance are uncoupled. A direct relation exists. The resulting shear
modulus is,

]
Agh=20=__50 _ _717Gpa (4.100)
€2’ 6.97X1073

This agrees with the result of Equation 4.47. We can take advan-
tage of the transformation properties of stress and strain to con-
vert the uniaxial tensile or compressive stress applied to a 45-
degree angle-ply to a shear test. In terms of the applied stress and
measured strain in the symmetry axes of the angle-ply, the 1-2
coordinate system, ‘

6,/2
st=A66/h="'o"‘_o (4.101)
€1 T €,
When the applied stress is positive,
;>0
(4.102)
€3 <0
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The denominator is the sum of the longitudinal and Poisson’s
strain if the negative sign of Poisson’s strain is ignored.

10. conclusions

The in-plane stiffness of a laminated composite can be obtained directly
by applying the rule of mixtures equation to the stiffness of the uni-
directional composite. The in-plane compliance is simply the inverse of
the in-plane stiffness. Finally, if engineering constants are desired, they
can be obtained from the components of the in-plane compliance. The
process described above is straight-forward and is applicable to the flex-
ural stiffness of laminated composites as well. The relationship between
engineering constants of the constituent plies to those of a laminate is
very complicated. In place of simple linear rule of mixtures equations,
we have highly non-linear relationships. These non-linear relations are
responsible for the curves in “‘carpet plots.”’

Matrix inversion is required to obtain the components of compliance
from those of stiffness. In the process, all the components of the stiff-
ness participate in the determination of each component of compliance.
It is therefore difficult to visualize the impact of a change in the stiff-
ness to the change in compliance. Simple ratios or linear relationship no
longer exists. The effect of such change in the stiffness on the resulting
engineering constants become even less obvious. This is shown in the
general bidirectional laminates where Poisson’s ratios are no longer
bounded by the limits imposed on isotropic materials. They can be
greater than one-half or less than zero. This presents a challenge to
design formulas intended for the conventional material. The tendency
to make composite materials orthotropic or quasi-isotropic is under-
standable, but the designer may be depriving himself of the opportunity
of an optimum design.

It should be emphasized again that laminated composite materials are
governed by analogous stress-strain relations to those of unidirectional
composites. The in-plane stiffness of a laminate is bounded by the
stiffness of the constituent plies. But the compliance and the associated
engineering constants are not always bounded by those of the constitu-
ent plies. When material constants are not bounded, it is very difficult
to rely on intuition. This is why discipline is so important when we
work with composite materials. We must keep track of the signs; we
must know how the properties of the constituent plies are translated
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into the stiffness of a laminate. In this respect, the components of
stiffness are preferred because their variations with the ply properties
and stacking sequence are governed by simple, explicit, linear relations.
It is also important to know how many degrees of freedom are available
as we change ply orientations, or add or subtract plies in order to
achieve an optimum laminate. ‘
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10. homework problems

a.

b.

Find stiffness compliance, and engineering constants of T300/5208
angle-ply laminates with +r/8?

Find stiffness, compliance, and engineering constants of hybrid
cross-ply laminates with O-degree T300/5208 and 90-degree Scotch-
ply 1002 for ply ratios of 1, 2, 4 and 8 as in Table 4.7. Write down
the elastic constants for ply ratios of 1/2, 1/4 and 1/8. Which con-
stants of the hybrid are bounded? Which are unbounded?

How do we determine the off-axis properties of cross-ply laminates?
Rotate the entire laminate by angle v as that in Figure 4.12. Show
the coupling cocfficients for the laminates in Table 4.7.

What is the Young’s modulus of an 8-ply 45-degree T300/5208
slender body? What is the Young’s modulus of two parallel but
unbonded slender bodies, one with +45 degree, the other —45
degree? What is the Young’s modulus of a symmetric laminate con-
taining the same ply angles; i.e., [¥45,]¢? Explain the difference
between the unbonded and the laminate (bonded).

The in-plane modulus of a symmetric laminate follow the rule-of-
mixtures relation using the ply modulus; e.g.,

A=Y 0y, (4.103)

Is the following rule-of-mixtures relation using the Young’s modulus
valid?

FO = Z ED y, (4.104)

Explain the different results of T300/5208 [0/90] and [+45] lam-
inates derived from the two mixtures equations.

Are there bounds on the in-plane Poisson’s ratio as fiber stiffness
approaches infinity or matrix stiffness to zero for cross-ply and
angle-ply laminates? Are there bounds on shear and normal coupling
coefficients?

. What devices can use a material with negative Poisson’s ratio?
. Can a quick estimate be made of the in-plane modulus of laminates

following the homework problem ! in Chapter 3? Compare the quick

;
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estimate with the exact results in Tables 4.7 and 4.9 for various
cross-ply and angle-ply laminates. .- -

We observe in Table 4.7 that the sum of the first two columns (or all
four columns) of modulus is independent of the ply ratio. Why does
the sum for the compliance components change with ply ratios?
What quantity of the average stress components remains constant
when a hydrostatic extension (e = €7 = p.) is imposed on a cross-
ply laminate? Does this quantity depend on the ply ratio?

. What quantity of the strain components remains constant when a

hydrostatic tension or compression (N, = N, = tp h) is imposed
on the same cross-ply laminate? Does this quantity depend on the
ply ratio? Does this quantity change if the entire laminate is ro-
tated? How many invariants in Table 4.7 are equal to those in
Table 4.9?

In sizing a conventional material, thickness change is the only
option. A thickness increase will reduce linearly the stress and strain.
All components of stress and strain will change proportionally. A
change in thickness is equivalent to proportional loading or unload-
ing. In sizing composite laminates, proportional increase in stress
and strain is possible if the ply ratio or ply orientations remain -
constant. But, in general, the ply orientations change as we seek an
optimum laminate. What principles and constraints are involved in
achieving an optimum laminate from the standpoint of stiffness only
(not strength)? We will be concerned with a point within a large
structure, and it is assumed that the stress resultants are given and
do not change with ply orientation.

. Calculate quasi-isotropic constants using Equation 4.62 for all uni-

directional composites listed in Table 3.6. These constants represent
the lower bound performance that we can expect from laminates
made from these composite materials. How do. they compare with
aluminum on the specific stiffness basis (stiffness £ divided by
density or specific weight)? -
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nomenclature

Ajj, a;; = In-plane stiffness and compliance of multidirectional sym-
metric laminates; in Nm~! and N ~'m, respectively

ff = In-plane engineering constants;i = 1,2,6

h = Total thickness of a laminate

h; = n;h, = Thickness of i-th ply group; i = 1 to m
h, = h/n = Unit ply thickness, in m

m = Total number of ply groups in a laminate

N; = Stress resultant, in Nm™ ;i = 1,2,6

n = Total number of plies in a laminate

n; = h;/h, = Number of plies in the i-th ply group

P = Ply ratio of a bidirectional laminate

ij') = Stiffness of ply group with 8 ply orientation
R,y 4 = Radii of generalized Mohr’s circle for unidirectional and

laminated composites; i = 1,2
U, = Linear combinations of stiffness; i = 1to §

V; = Geometric factors;i=1to 4

Vo = Volume fraction of ply group with f orientation

v = Rigid body rotation of a laminate

0; = N,/h = Average stress across thickness of a laminate

€ = In-plane strain;i = 1,2,6

¢ = The angle of a *+¢ angle-ply laminate

Vi = vg,, v?, Poisson’s ratios; v¢, , ¥2, shear coupling coefficients,
v{¢, ¥5 ¢ normal coupling coefficients

6 = Ply orientation

chapter b
flexural stiffness of
symmetric sandwich laminates

The flexural stiffness of symmetric sandwich laminates with honey-
comb core and multidirectional composite facing will be covered. The
strain in the laminate is assumed to be proportional to the curvature.
Flexural stiffness can then be defined in terms of the modulus and
compliance and the moment-curvature relation. The contribution of the
core and the effect of stacking sequence on the flexural modulus can be
described by explicit formulas. For design optimization the com-
ponents of modulus are therefore easier to use than those of com-
pliance and equivalent engineering constants.

167



168 introduction to composite materials

1. laminate code

The same laminate code convention as that used for the in-plane
modulus in Equation 4.1 will be followed for the flexural modulus. For
symmetric laminates we can add the half depth of the core in the code;
for example:

[05/90,/45/—453 /2,1 ¢ (5.1)

The orientations, ply groups and the core for this laminate are shown in
Figure 5.1. The plies are arranged in an ascending order from the
bottom or the z = —h/2 face. This again can be a source of confusion.
The code in Equation 5.1 applies to the lower half of a symmetric
laminate starting from the bottom face. The stacking sequence in the
upper half of the laminate is in reverse order of the code. The actual
integration for the calculation of the flexural modulus for symmetric
laminates is applied over the upper half of the laminate which extends
fromz=0toz = h/2.

2
MiE—=—==-7 75
——————— 90,
4
==t i
—O0 1 Core 2z, b
-Z
Cl— == — —1-45
45
——————— 50,
=TT %

Figure 5.1 Dimensions and stacking sequence of
symmetric sandwich laminates.

In the case of the in-plane modulus, only the volume fractions of the
ply groups are important. This is clearly shown in Equation 4.38 and
Table 4.4. The actual stacking sequence does not affect the in-plane
modulus. Whether the laminate code is intended to follow an ascending
or descending order is of no consequence to the in-plane modulus. This,
however, is no longer true for the flexural modulus that we will discuss
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in this chapter. The positions of ply groups in a laminate have direct
effect on the flexural modulus. That is why we are discussing the

- laminate code again.

2. moment-curvature relations

In the flexural behavior of laminates, moment and curvature are the
key variables, similar to the role of stress resultant and in-plane strain in
the in-plane behavior of the last chapter. The counterpart of the stress-
strain relation for the in-plane behavior is the moment-curvature rela-
tion for the flexural behavior. The elastic constants for the latter rela-
tion will be called the flexural stiffness and flexural compliance. It is
the purpose of this chapter to develop definitions of moment and
curvature, and their relationship to each other.

The distribution of ply stresses can be symmetric and anti-symmetric
with respect to the midplane. In Chapter 4, the stress distribution was
symmetric and this was shown in Figure 4.3. In Figure 5.2 we will
repeat the symmetric distribution of Figure 4.3, and we will also show
the case of anti-symmetric distribution. :

As the result of symmetric stress distribution in Figure 5.2(a), we can
represent the variable stress by an average stress and a stress resultant,
shown in Equations 4.7 and 4.15, respectively. The in-plane behavior of
symmetric laminates can be characterized using the average stress or
stress resultant. When the stress distribution is anti-symmetric, as shown
in Figure 5.2(b), the average stress across the entire laminate thickness
is zero. One approach of dealing with the anti-symmetric stress distribu-
tion is to define a new quantity: the moment, to take the place of the
stress resultant. The simplest or first moment has three components:

M1-=f 0,2zdz
—h/2
h/2 . ’
M, =f 0,2dz (5.2)
—h/2

h/2
Mg =/ O¢2dz
—h/2
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The unit of moment is N, or Nm/m;i.e., a moment per unit width of a
laminate with thickness 2 and width &.

z z

Ul

N

FG=Nh
(6)

Figure 5.2 Stress variations across laminates. Illustration of sym-
metric ply stresses in (@), and anti-symmetric ply stresses in (5).

The sign of the components of moment is also critical. The bending
components of moment, like the normal components of stress and
strain, are easy to rationalize and readily defined. A bending moment is
positive if the average induced stress in the upper half of the laminate is
positive. In Figure 5.3(a) we define the positive component for M, ;in
Figure 5.3(b), the positive M,. When M, or M, is negative, the average
induced stress in the upper half of the laminate will be negative. We use
average stress here because in a laminated material it is possible to have
both positive and negative stresses in each half of the laminate. Figure
5.2(b) shows this possibility.

’ . -
==\ R 7 el
(00 (O P Su
‘ oy
(a) (b) (c)

Figure 5.3 The positive directions of components of moment.
Bending moments are shown in (a) and (). In (c), positive
twisting moment appears as clockwise torque on the positive
1-axis face; counterclockwise on the positive 2-axis face. The
effect of the positive twisting moment can be duplicated by
four self-equilibrating forces acting at the corners as shown.
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The sign convention for twisting moment follows the same rule; viz.,
a positive shear stress on the upper half of the laminate is associated
with the positive twisting moment. The positive shear stress component
is defined in Figure 1.6. Figure 5.3(c) shows the result of positive
twisting moment and the induced shear stress distribution. All the
arrows will reverse their directions if the twisting moment is negative.
We are not imposing the right-hand rule for the sign convention except
the coordinates and angle of rotation. If the right-hand rule is followed,
as shown by Timoshenko,* we must distinguish the twisting moment
on the 1-axis face as M, ,, and that on the 2-axis as M, ; or M, , and

My-x , respectively.

Then we have the following relations:

My, = Mxy =-—Ms
(5.3)
Moy = My, = Mg
Therefore . M,, =—M,, (5.4)

The important issue here is not what sign convention we use. We must

- ‘understand. the Tationaie ‘and -be consistent. Again  we' would like to

mention how critical signs are when we work with composite materials.
A wrong guess is often inconsequential for conventional materials, but
can be disastrous for composites. The signs for shear stress, shear -
strain, twisting moment shown here and twisting curvature, which we
will introduce presently, are all sources of uncertainty and error.

We will now derive the strain-displacement relation for the bending
of a plate similar to that for the in-plane stretching of a plate in Equa-
tions 1.1 and 1.4. We will assume that the plate is initially flat as shown
in Figure 5.4(a). After bending, the plate can be described by a func-
tion w where:

w =w(x, y) (5.5)

[t is implied that the vertical displacement of each point does not vary
in the z-direction. The normal to the plate does not stretch or deform.

*S. Timoshenko and S. Woinowsky-krieger, Theory of Plates and Shells, McGraw-Hill, 1959,

p. 80
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It only rotates as the plate is bent or twisted. Figure 5.4(d) is an
illustration of a bent plate.

Zz w

/ MIDPLANE

r S G

] % X

~
- re—

fa) (6}

Figure 5.4 Definition of a plate or laminate before and after
bending. The deformed midplane is described by a function

w(x, ¥).

The rotation of the normal to the midplane can be directly related to
the first derivative at the same point in the plate. This is shown in
Figure 5.5 where two cases of the bent plane are shown for the purpose
of establishing the sign convention. Consistency between Figures 5.3
and 5.4 is maintained if we use a negative sign in the displacement
derivative relation as follows: :

u =—z0= —zm (5.6)

ox

Similarly, we can derive the displacement along the y-axis as:

) (5.7)
oy

From the last two equations, and the strain-displacement relations of
Equations 1.1 and 1.4, we can show that:

€ :_aﬂz—z a2w
' ax dx?
2
6 = ou v _ 5 3w
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B 2 o
955 <9 9% o
z z

(a) . (b)
Tension Cormpression
ar z>o0 at z2>0

Figure 5.5 Sign convention of midplane displacements. For a
concave downward deformation in (@), the derivative of w is
negative, and a negative sign must be added to the displacement-
derivative relation in Equation 5.6. When the curvature is reversed
in (b), the derivative of w is now positive.

From elementary calculus, we can relate the second derivatives to
curvatures &’s as follows:

9w
ki =—
! ax?

3w
k, =~— .
2 3y (5.9)
kg = —2 W

0xoy

Negative signs are used here in order to maintain consistency with the
definition of moments established in Figure 5.3. The twisting curvature
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is difficult to illustrate and is not normally covered in elementary text.
We derived our relation through the use of the strain-displacement rela-
tion in Equation 5.8. Substituting the definitions in Equation 5.9 into
5.8, we have: : ‘

€. (z) = zk,4
€,(2) = zk, (5.10)
€6(z) = zkg

This assumed linear strain distribution is shown in Figure 5.6. A more
general assumed state of strain than both Equations 4.6, and 5.10
would be the sum of the two. This combined strain will be used as the
basis of general, unsymmetrical laminates which we will cover in
Chapter 6.

P4 Z 4

a A2 D }Z/fs
:L e, & —e,

Figure 5.6 Assumed linear strain distribution across
laminate thickness. Maximum strain values are reached

at the upper and lower faces. They are equal but opposite
in signs when the laminate is symmetric.

We can now derive the moment-curvature relations by substituting
the assumed strain into the definition of moment in Equation 5.2. We
must first, however, use the off-axis stress-strain relations listed in Table
3.1 for this substitution. This will express the stress components in
terms of the strain components.

From Equation 5.2

M, = fo,2dz (5.11)
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From Table 3.1

M, :f[QnEl + Q1262 + Qy6€6l2dz (5.12)

From Equation 5.10
=f[Q11k| + 0,2k, +Q16kgl2%dz (5.13)

Since curvatures are constant, not dependent on z, they can be factored
out,

M, = [fQ1122dz]k, + [fQ”zzdz] ky + [leﬁzzdz] ke

Ml =D11k1 +D12k2 +Dl6k6
Similarly

My =Dy ky +Dy0k, + Dy ks ‘
(5.14)
Mg = D¢, k, + Dgrky + Dggke

where
D,, ;_:./-Qllzzdzv D;, =fQ2222dZ, D,, =D,,,

D,, =fQ1222d2, Dy, =fQ6622dZ,

D, =fQ1622dZ, D;¢ =_/‘Q2622dz-w D36 = Dyg,.

Dy¢ = Dgy, (5.15)

We have thus derived the mdment—curvature relation in Equation 5.14
and defined the flexural modulus in Equation 5.15.
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Inverting the moment-curvature relation we can obtain the following
relation in terms of flexural compliance, duplicating the same steps
used in the inversion in Chapter 3.

ky =d\ M +d, M, +dy¢Ms
k2 =d21M1 +d22M2 +d26M6 (5.]6)
ke =de M, +de, M +deeMs

The relationship above can be presented in matrix multiplication tables
as follows: '

table 5.1

moment-curvature relation of symmetric
laminates in terms of stiffness

K % ks
M, 0, De D
M, Dz O, Do
M, Dg, () Dgs

table 5.2

moment-curvature relation of symmetric lam-
inates in terms of compliance

2
RS
S

R
& 88
:‘.Q\ RQ RQ'
aQ a& aQ

We can now define the effective flexural engineering constants. From
the compliance relation in Table 5.2, we know that under simple bend-

ing of M relative to the l-axis only, the resulting curvature along the
[-axis is: : v

M
=dyy —

ky =d M, b

(5.17)
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where b is the finite width of a beam or plate; M is the total moment

and is equal to M; b. From elementary theory, we know that rigidity of
a homogeneous beam is:

Rigidity = EI (5.18)
M

=M 5.19

T ( )

where E is the homogeneous Young’s modulus; and / is the moment of
inertia. By combining the two relationships, we have:

EI=b/d,, (5.20)
or E=E{ =b/ld,, =12/h*d,, = 1/I*d;;  (5.21)
where I =bh3/12,I* = I/b = h3/12

E{ = Effective Young’s modulus along the 1-axis
Similarly, we can show:
Ef =12/n3d,, = V/I*dy,
(5.22)
EL = 12/h3dgs = 1/I*dge

The superscript f denotes effective flexural engineering constants, These
are the constants if the beam or plate of our multidirectional laminates
is treated like a homogeneous material. Other dimensionless engineering
constants analogous to those for off-axis unidirectional composites in

Chapter 3 and to those for in-plane anisotropic behavior in Chapter 4
are:

d d
T Y S 5.23
V2, d”’ 12 dra ( )
d d
fo- Zet o f o 18 524
Ve1 d“’ 16 doe. ( )
d d
fo= 28t f o 28 (5.25
Vo2 dzz’ V2s dee )
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3. evaluation of flexural stiffness modulus

We will now evaluate the components of flexural modulus by perform-
ing the integration of the components in Equation 5.15. Similar to the
case of in-plane modulus in Chapter 4, we will first substitute the
off-axis stiffness of the unidirectional composites using the multiple-
angle transformation relations listed in Table 3.3.

From Equa»tion 5.15
Dy, =fQ1’122dz | (5.26)
From Table 3.3
=./.[U1 + U, c0s20 + Ujscosd481z%dz (5.27)

Since the U’s are independent of z for a laminate with the same uni-
directional composite,

D,, = U, fzzdz + U, fcos2022dz + U, fcos4922dz (5.28)

=Uh*+ UV, +U,V, (5.29)

where

* h/2 h(2
h =f zzdz=2f z¥dz
—h /2 z

¢

_h . 2V Zr [ s
G

=I¥[1—2z%3]
c
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z7 = Volume fraction of core = 2z_/h
‘ (5.31)
h(2 h/2
V, = f cos20z%dz = 2’/. cos20z2dz
—h/2 - z,
hl2 ’
V, = 2 f cos40z2dz (5.32)*
Z

c

It is assumed that the honeycomb core has no stiffness in the 1-2
coordinate system. That is the reason the lower limit of integration is
set at the half depth of the core.

Similarly,
D22 =U1h*_U2 Vl +U3V2 ‘ (5.33)
D;z =U4h*_U3 V2 (5.34)
Dgg = Ush* — U3V, ’ (5.35)
D, =%U2 Vs + U3V, ‘ (5-36)
Das =%U2 V,—U,V, (5.37)
where
h/2 )
V; = 2/ sin260z2%dz (5.38)
Zc
hi/2
V, = 2/ sind40z%dz _ (5.39)
ZL‘ )

* *A more general definition can be found in Equations 6.79-6.82.
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Here again, the evaluation of the flexural modulus reduces to the evalu-
ation of the four geometric factors, the V’s. Similar to Equation 4.31,
we can combine the definitions of the V'’s into one expression:

k2 . .
Viiasa) = 2[2 [cos20, cos40, sin20, sin40)z*dz  (5.40)
c

We can also put all the formulas for the components of the flexural
modulus into a matrix multiplication table as in Table 5.3. Note the
similarity between this table and the formulas for in-plane modulus in
Table 4.3. The definitions of the V'’s, however, are different. Again the
geometric factors are separated from the material property. For the
same material, the U’s stay constant and the V’s change from laminate
to laminate. For the same laminate but with different material, only
new U’s are needed.

table 5.3 ‘
formulas for flexural modulus of symmetric
sandwich laminates

h* U Us
Oy, 17 7 4
D55 17 7 Ve
D2 Us -V
Dss Us -V
D6 5% Ve
Dze é*@ -Ve

where h* = (/—ZC*J//IJ//Z -//—zc*J}[*

Analogous to the in-plane modulus, the number of flexural modulus
dependent on the stacking sequence are four, not six. Two linear in-
variants can be derived from Table 5.3:

Dll +D22 +2D12 =2[U1 +U4]h*
(5.41)
Dgg =Dy =[Us —U,1h*

The core and thickness correction factor which appear here and in the

first column of Table 5.3 will reduce the invariant terms.
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Normalized flexural modulus can also be represented by the general-
ized Mohr’s circles like those for the unidirectional composite in Figure
3.9 and the normalized in-plane modulus in Figure 4.6. In the process
of lamination, the V’s either maintain or reduce the length of the radii
of the Mohr’s circles, similar to the factors in Equations 4.43 and 4.44
for the in-plane modulus. Honeycomb core will reduce the distance
between the Mohr’s circles by a magnitude of A*/I*. This core,
however, will not affect the radii of the Mohr’s circles. The use of core
provides a degree of freedom in addition to and independent of the
stacking sequence of the facing material. e

Let us try to evaluate the first term in Equation 5.40.

h/2
V,=2 f cos20z2dz (5.42)
Zc .

If each ply group would have the same unidirectional material, the
integration can be replaced by a summation. See Figure 5.7 for the
definitions of indices of summation.

m[2
v, =2 c0s20,(23 —z2 ;] (5.43)
153 ilZ; i—1 -
i=c+1
; ’
2 <mre nzz
_ 16
=z 14
i-1— 2z, i-th Ply Group %
8
¢ — % T T 6
CORE Z
0o — 2z, L1t o—

Figure 5.7 Schematic diagram of a
symmetric sandwich laminate. There
are m ply groups and »n plies in the
laminate using indices / and ¢, respec-
tively. Assuming the half depth of the
core is equal to a multiple of unit plies,
the half depth can be designated by

{ = ¢ = 6 in this figure.
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Simplification of this summation in terms of volume fractions such as
that for the in-plane modulus in Equation 4.38 is not possible because
of the cubic relation here instead of the linear relation. Some simplifica-
tion is possible if the half thickness of the core is a multiple of the unit

ply thickness;i.e.,

= an integer

(2
I
b|::

o

This is assumed in Figure 5.7. Then the z coordinates in Equation 5.43
can be replaced by ply numbers as follows:

z, = ch,
zy = (¢ +mnyh, (5.44)
z, = (¢ +ny +ny)h,

where n; equals the number of plies in the i-th ply group. In terms of
Equation 5.43, this can be rewritten as

m
V= 5 Z cos20,[13 — 1} ;] (5.45)
i=c+1
= 4 46
where t, = E; ﬁ ' (5.40)
12
Let : vy = h—sV, = V/I* R S

Substituting Equation 5.45 into Equation 5.46, we obtain

m(2
vr =% Z c0s20,(63 — 13, (5.47) |

n3
i=c+1
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where n equals the total number of plies including the core thickness
expressed in equivalent number of plies. The variables in the bracket
can be expressed in terms of plies using Equation 5.44. The formulas
for the other three V’s will take the same form. Only the trigonometric
function changes; i.e., cosine in Equation 5.47 is replaced by sine, etc.
This bracketed quantity in Equation 5.47 is therefore a weighting
factor. In the case of the in-plane modulus, the weighting factor was the
volume fraction of each ply orientation; we had the rule-of-mixtures
relation. In the case of flexural modulus, this weighting factor put
heavier emphasis on the outer plies as the result of a cubic relation.
Again, if we assume that all plies have the same thickness, and the core
depth is a double multiple of the unit plies, we can establish the
numerical values of this weighting factor starting with the midplane as
zero and move upward toward the top surface where the n/2-th ply is
located. The value of this weighting factor is listed in Table 5.4. Equa-
tion 5.47 can be rewritten as follows:

nf2
v ;% Z c0s26,[£* — (1—1)] (5.48)
t=c¢c+1

The index ¢ is used here to distinguish from the index i in Equation
5.47. The latter index is intended for the number of ply groups; and the
former index, the number of individual plies. The two indices will be
equal if each ply group has only one ply.

The weighting factor above can be applied directly to Equation 5.26,
in which case analogous to Equation 5.48 we have:

nf2
| 8
Dij=ps Dy=my ) QYL = (1) (5.49)
t=c+1

Using the numerical values listed in Table 5.4, Equation 5.48 can
now be written as:
V*

, =% [c0s20, + Tcos20, + 19c0s265 + 37c0s204 +...] (5.50)
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table 5.4

weighting factors for the flexural modulus of
symmetric sandwich laminates

Ply order
number, r—1 2 —(@-1)?
1 0 1
2 1 7
3 2 19
4 3 37
5 4 61
6 S 91
7 6 127
8 7 169
9 8 217
10 9 271
11 10 331
12 11 397
13 12 469
i4 13 547
15 14 631
16 15 721

If adjacent plies have the same ply orientation, we have for example,
ply groups with two plies each,

0,=0,,0, =04... , (5.51) -

Then
Vl* =% [8cos20, + 56cos204 + 152cos2605 +...] (5.52)
n

If we have a honeycomb core with a half-depth of 4-ply thickness, or
the first ply or ply group for the facing will start with + = 5 in Table
5.4,

vy

% [61cos20, + 9lcos26, + 127cos204 + 169cos20, +...]
(5.53)
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where the total number of plies n must include the half-depth of the

core which is equal to 4 plies. 1f we have a 3-ply facing, the value of n/2
is 7.

4. flexural behavior of unidirectional laminates

If our laminate is unidirectional, the ply orientation is fixed, independ-
ent of the z coordinate. The trigonometric functions in Equation 5.40
can be taken outside of the integrals. The resulting V’s are:

V“’2,3’4] = [co0s20, cos40, sin20, sin40] h* (5.54)

where #* is defined in Equation 5.30. For this specialized case, the
formulas for the flexural modulus are as follows:

table 5.5

formulas for the flexural fnodulus of uni-
directional composites

wr* vy, Yy,
o) Y, cos26 cos48
0% 7 -cos26 cos48
0% 7 -cos46
D | Us e -cos48
o +sin28 sin46
o 4 sin26 -sin48

3
L S /- Sy LS S
where Dy = hJD,/—D,//I, h7I%= |~z

Note that the constants in this table are identical to those of the trans-
formed in-plane modulus of unidirectional composites in Table 3.3. The
only difference is the normalizing factor 2* needed for the flexural
modulus. Thus, we can obtain the normalized off-axis flexural modulus
directly from the off-axis modulus of a unidirectional composite. This
is shown in Figure 5.8. All the remarks about the transformed modulus
of unidirectional composites following Figure 3.5 are equally applicable
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Figure 5.8 Transformed flexural modulus of unidirectional
" T300/5208. These are the same curves as those in Figure 3.5
with the exception of the normalizing factor in Table 5.5,

to the flexural modulus. The generalized Mohr’s circles in Figure 3.9 are
valid for the flexural modulus of T300/5208 if normalized components
are used.

By incorpofating a sandwich core into Tables 5.5 we have:

B h3 [1_26*3]

12 Qi1 =h*0¢,

11

(5.55)
or Dfy =Dy /1* = [1-28] Qy;
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Identical factor shall be applied to the other components of the flexural
modulus. From this simple relation we can immediately write down the
flexural compliance by using the same normalizing factor. We have
now:

12 :
dy, = ———— 8, =8,,/h*
11 7 1—2] 11 11
‘ (5.56)

or dfy =d I* = §,/[1-2¥]

where the transformed compliance can be found from Table 3.12 and
Figure 3.11. The latter is repeated in Figure 5.9 where the normalizing
factor has been added. So long as a sandwich beam or plate consists of
symmetric, homogeneous facings, its flexural stiffness and compliance
can be obtained directly from the stiffness and compliance of uni-
directional composites. We only need to know the normalizing factor,
as shown in Equations 5.55 and 5.56. We can make the following
remarks about the flexural rigidity of beams and plates using the
expressions in Equations 5.55 and 5.56

® Rigidity is highly dependent on the thickness 4. If we double the
thickness, we will get a cubic increase in return, or 8 times the
rigidity. ,

® Removal of materials near the midplane is a very effective way of
reducing the weight without much sacrifice in the rigidity. If one-
third of the material at the center is removed; i.e., z¥ = 1/3, the
loss in rigidity as measured by z*3 is only 1/27 of the solid beam
or plate.

Both remarks are valid for composite and conventional materials so
long as the facing material is homogeneous. If multidirectional com-
posites are used for the facing, the remarks above are true only qualita-
tively. We will discuss this later in this chapter.

For an off-axis unidirectional composite facing, the beam will twist
under pure bending. This is the equivalent of the shear coupling in the
in-plane behavior of off-axis materials. From Table 5.2, we can relate
the induced curvatures to bending moments, For example, if we apply
a bending moment to our off-axis beam as shown in Figure 5.10, from
Table 5.2:
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ky =d M,
ky =d, M, (5.57)
ke =de 1M,

The first curvature is due to normal bending; the second, the Poisson
coupling; and the third, the twisting coupling. The question now is how
will the twist occur: how much, and in what direction. This is the
recurring question associated with shear stress and shear strain. Again,
we must pay attention to the sign convention. This was illustrated in
Figure 3.15 for the in-plane behavior.

am(TPa)”’ | %z
00| 199 |-
80 | 80 |-
60 |- 60 |-
40| 40 |-
20 |- 20 |-
S|
. L 4
o o 30 60 90
| d#
40 66
/X 120 |-
% 100 |-
/ 80 |-
60 |-
»
% o0
20 |-
o 30 60 90
- L . &
— o 30 60 S0
. . .
s (/9]
/
QJ 30 60 99 o 30 60 90
L 1 5 i 2 = &
-20 =20
-40 -40
-60 -60

Figure 5.9 Transformed flexural compliance of unidirectional
T300/5208. This is the same as Figure 3.11 for the off-axis com-
pliance except the normalizing factor #* in Equation 5.56 has

been added.
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y.4
5 .
v/' -
"/
— Vats
- M -,

Figure 5.10 Pure bending of an off-axis beam.
Positive ply orientation and positive moment
--are shown.-Heavy arrows.show the direction of
movements of the four corners, similar to

Figure 5.3(c).

We know from Figure 5.9 that the shear coupling terms for T300/5208
and for most practical composites are negative for positive ply angles.
Since the moment in Figure 5.10 is also positive, we know from Equa- .
tion 5.57 that the twisting curvature must be negative. Now refer to
Figure 5.3(c) where we showed the effect of a positive twisting moment
on the stress distribution and the possible directions of displacements
indicated by heavy arrows. Hence a positive curvature will be a clockwise
rotation about the 1-axis. For our beam in Figure 5.10, we have nega-
tive curvature. Therefore, the twisting curvature caused by the bending
moment will be a counterclockwise rotation along the 1-axis. This
rotation is represented by the heavy arrows shown at the comers.

5. flexural modulus of cross-ply laminates

Cross-ply laminates are the simplest multidirectional laminates. Repeat-
ing the values of the trigonometric functions in Table 4,5, we have the
following:

table 5.6

values of trigonometric functions for cross-ply laminates

0; c0s26; cos4d; sin20; sind6;
0 1 1 0 0

90 —1 1 : 0 0
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Let us study the effect of stacking sequence on the flexural modulus
of symmetric laminates. We will use a 16-ply laminate with three differ-
ent stacking sequences as shown in Figure 5.11.

o o : S0
90 0
h/2 1 ——
90 o 90
A »| _ 2
- I R Bt G 90 ]
m=4 m=8 m=/6
(a) (b) (c)

Figure 5.11 Cross-ply laminates with 16 plies but
different number of ply groups; viz., m = 4, 8 and 16.
Because of symmetry only upper half of the laminate
is shown,

From the second column of Table 5.6, we know that

cos4f, =cosdf, =1 (5.58)

Following the pattern of Equation 5.50 for V;k, we can immediately
write down the analogous relation for V5.

8 512
Vi i=L (1+7+194+374+61+914+1274+169)=—==
2 ,,3( . ) 512

(5.59)

where n = 16 was used. Because of the special angles in Equation 5.58,
this V* will remain constant, independent of the stacking sequences
shown in Figure 5.11.
Knowing the values from the first column of Table 5.6, we can
substitute the values into Equation 5.50 for the case of m = 4 or Figure
- S.11(a).

w
e

vi=2 (—1-7-19-37+61+91 +127+ 169)=—?5=%

163
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Note that the first ply from the midplane upward is a 90-degree ply. We
have mentioned before that there is a difference between the laminate
code as defined by Equation 5.1 which follows an ascending order from
the bottom surface of the laminate. The stacking sequence starting
from the midplane_is the opposite of the laminate .code for all sym-
metric laminates, as shown in Figure 5.11.

The case of m = 8 shown in Figure 5.11(d), and that of m = 16 in
Figure 5.11(c) are listed below, respectively

Form =8,
8 192 _ 3
VE=—"_(—1—74+19+37—61—91 + + =2Jc=2
1 163( 7+ 19+ 37 1 —91 127 + 169) 5138
(5.61)

Form = 16,
8 96 3
=S (—1+7—19+37—61 +91 — 127 + 169) = == = —
4 163( 12 9) 512 16
(5.62)

It appears that a pattern has been established for cross-ply symmetric
laminates with increased ply groups

v¥=3 m=4,816,. ..
m

(5.63)

Summarizing the results for this family of cross-ply laminates in
which the total number of ply groups is a variable, we can enter the
values of V’s into Table 5.3 and arrive at Table 5.7. Care must be
exercised in the proper use of normalizing factors. Note that only V{" is
affected by the stacking sequence. We only showed the case of changing
the number of ply groups. Other stacking sequences than those shown
in Figure 5.11 are, of course, possible; an example of which may be
[02/904/0,1¢. The value for V; will be different from that shown in
Equation 5.60 and Table 5.7. The effect of ¥, on the flexural modulus
is the degree of anisotropy, or the difference between D, ; and D,,. In
the limit when we have an infinite number of alternating plies, our lam-
inate will become quasi-homogeneous. The property of the laminate
will be square symmetric, but not isotropic. This difference between
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table 5.7 -
formulas for flexural modulus of a solid
symmetric [0/90] cross-ply laminate

/ e Us
o | U = /
0:5 Y, - % /
0 | U -/
Ded | Us -/

Di6= D26=0, Z;*=0, D} = Dy /T*

square symmetric and isotropy was illustrated in Equations 1.22 and

1.23.
Let us calculate the flexural modulus of cross-ply laminates shown in

Figure S5.11. Using the data for T300/5208, we have for 16-ply
laminates

h  =16h, =16 X 125X 1076 =2 X 10°m
3
b, =%t (5.64)

13 3
1—2‘ [Ul +;U2 + U3]

— 666 X 10712 [76.37 +3.8573 4+ 19.71] (5.65)
g m

For ply group m equal to 4
D!, =160.3GPa’

(5.66)
106.9 Nm

Dll
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orform=238

D, =128.2GPa
(5.67)
Dll = 85.4 Nm
orform=16
D}, =112.1GPa
(5.68)
D,, = 747 Nm

or for m = oain Table 5.7, the laminate becomes quasi-homogeneous.*

Dl*l = Dz*z = 96.0 GPa )
(5.69)
D” = Dzz = 64.0 Nm

We can repeat the process above and obtain all the components of
modulus with or without normalization, and the corresponding com-
ponents of compliance. We purposely list both the nommalized and
unnormalized components because they serve different purposes.

® m=4,[04/904 ], Figure 5.11(a) (5.70)
160.37  2.89 7 | [6.24  —.569 i
Di=| 28 3177 GPa  df=|—569 3151 (TPay™
7.17 | 139.4
F1069 193 g [ 936 —s85 ]
Dy=| 193 2118 | Nmo a=| -85 4727 (KNm)™*
478 209.2
(5.71)

*This occurs when normalized flexural modulus is equal to the in-plane modulus in Table 4.11.
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e m=8,[0,/90,/0,/90,], Figure 5.11(b) (5.72)
- -3 -
128.22  2.89 F7.80 —.353
D;; = 2.89  63.92 GPa dj= [—353 1565 (TPa)™*
7.17 139.4 J
L. i L
[ 8548  1.93 11.70  —530
D, = 1.93  42.61 Nm d;= | —530 23.48 1 (kNm)™?
4.78 209.2
b -l 3 -
(5.73)

® m =o0or [0/90. . .], (This is a quasi-homogeneous laminate.)

F 96.08 2.89 F10.41 —313
D;= 2.89  96.08 GPa dj= [ —313 1041 (TPa)™
7.17 139.4
. o n
(6405 1.93 1562  —471
D;;= 1.93  64.05 Nm  d;= | —471 15.62 (kNm)™?
4.78 209.2
L. . L .

(5.74)

Based on the components above, we can say:

1. The shear components are uncoupled from the other four non-

zero components. The shear compliance is simply the reciprocal of
the shear modulus; i.e.,

7.17 X 0.1394 = 4.78 X .2092 = 1.000

The shear component is independent of the ply groups.
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2. The Poisson component of modulus remain constant as the ply
groups change. But the Poisson component of compliance changes
with m. ‘ '

3. Because of the constant Poisson component and the invariant con-
straint of Equation 5.41, the sum of the two normal components
of the modulus with or without normalization must be constant;

ie.,

160.37 + 31.77 = 128.22 + 63.92 = 2 X 96.08 = 192.16

106.9 + 21.18 = 85.48 + 42.61 =2 X 64.05 = 128.1

4. When the normalized components in Equation 5.74 are equal to
those in Table 4.7, the laminate is quasi-homogeneous.

5. Figure 5.12 shows the degree of convergence of a cross-ply lam-
inate to a quasi-homogeneous square-symmetric laminate.

Dy, Dgs, in Nm

100 |-
80 O
| 64.0@m=@
60 | L ————
ol poza
20 |-
A ! L. i i { i i -m
o 8 /6 24 3z 40

Figure 5.12 Flexural modulus components as func-
tions of ply groups for a T300/5208 laminate. Note
that as ply groups m increases, the modulus compo-
nents approach the modulus of the quasi-homogeneous
laminate, although many groups are needed for good
convergence,

If we introduce a honeycomb core into our cross-ply laminate, we
want to show how the flexural modulus can be calculated. Let us
examine three cross-ply laminates in Figure 5.13. These laminates are
sandwich constructions with facing materials identical to those solid
laminates shown in Figure 5.11. The number of ply groups are different
among these laminates. The core half-depth is equal to four plies.
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7]
0 ° 90
$0 50
0 0
hs2 90 —2
90 50
[T l }V
Ze
1 . -
m=4 m=8 m=16
(a) (b) (c)

Figure 5.13 Cross-ply sandwich laminates. This sym-
metric laminate has 2—8 ply facings and 4-ply thick
half-depth of core. Total thickness of laminate is 24
equivalent plies. Three different numbers of ply groups
are shown;m = 4, 8 and 16. This figure shows the
same facing laminates as those solid laminates in
Figure 5.11.

The flexural modulus of these sandwich laminates can be readily
calculated by substituting the nonzero trigonometric functions into
Equation 5.53. For the case of 4-ply group laminate in Figure 5.13(a),
orm = 4.

vE = % (=61 —91—127—169 + 217 + 271 + 331 +397)=%
(5.75)

or form=28

vE= 8 (61 —914127+169—217—271 + 331 +397)=§

243
(5.76)
or form =16
v = B (<61 +91—127+169—217+271—331 +397) =L
243 9
(5.77)
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We again notice the trend that, as the number of ply groups m increases,
the value of V' * decreases by the following relation:

pr=16 (5.78)

The sandwich laminates approach square-symmetric as m increases.
We need the following values before we can use the formulas for the
flexural modulus in Table 5.3:

VE==S_(61+91 4127+ 169 + 217 +271 +331 +393) = 18%
BCYE 1728
26 ,
_26 5.
7 (5.79)
o =4 -~ (5.80)
¢ =3
26
1—2:‘3 =37 (5.81)

V3 =V, =0  (The laminate is orthotropic.)

Using the same correction factor for the sandwich core is applied to the
first column of Table 5.3, and the normalized V’s defined in Equation
5.46, we can summarize the results in Equations 5.79 to 5.81 in a
matrix multiplication table as follows: :

table 5.8
formulas for flexural modulus of a symmetric
sandwich laminate with [0/90] facings

£ Ue %Y
O, Y, ?/% /
Dp 7 - '_9% /
0, | u -/
O | U -/

D167 D26= 0, O = O /I”, W/I* = 26/27
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We are now ready to calculate the flexural modulus of our sandwich
laminates assuming the facing material is T300/5208.

h = 24h, =24 X 125X 107¢ =3 X 103 m (5.82)
z,=4h, = 0.5 X103m (5.83)

From Tables 5.3 and 5.8 for m = 4 shown in Figure 5.13(a):

3
Dy, = ’:_2- [26U,/27 + 16U, [9m + 26U /27] (5.84)
= 2.25X 1079 [26 X 76.37/27 4+ 16 X 85.73/9m + 26 X 19.71/27]
(5.85)
Form = 4,
D, =130.62GPa  D,, =293.9 Nm (5.86)
form =8,
DY, =111.95 Dy, =251.9 (5.87)
form = 16,
D}, =102.04 D, =229.6 (5.88)
for m = oo,
D, = 92.52 Dy, =208.1 (5.89)
Similarly,
h3
D,, = —1-5[26U,/27 — 16U, /9m + 26U, /27] (5.90)
Form =4,
DY, = 544GPa  D,, =122.4Nm (5.91)
form = 8,
D}, = 173.46 D,, =165.3 (5.92)
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for m = 16,
D;2 = §3.02 D22 = 186.8 (5.93) )

for m = oo, ' :
DY, = 9252 D,, =208.1 (5.94)

This last value is the modulus for a quasi-homogeneous laminate. This is
the same value as in Equation 5.89. The normalized flexural modulus is
equal to the in-plane modulus in Table 4.7 times the core correction
factor of 26/27. The absolute flexural modulus is plotted in Figure 5.14.

1 Ou» Oze, In Nm
300 |-
, - ‘ ) 208 @ m=@
200 |-
/00 L L L -l 1 L. 1 ] ! m

8 6 24 32 40

Figure 5.14 Flexural modulus for a sandwich laminate of
T300/5208 as functions of the number of ply groups.
The convergence toward a square-symmetric laminate is
analogous to that in Figure 5.12,

- Note the- substantial increase -in. the modulus components of the
sandwich construction here over the solid laminates shown in Figure
5.12. First of all, there is a thickness increase from 16 to 24 plies. If our
laminate were homogeneous and solid or without a core, the increase in
the flexural modulus components will be the cube of the thickness
ratio. In our particular case, it will be:

(24/16)® =3.375 (5.95)
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On the other hand, if we have a sandwich construction, there should be
a reduction proportional to, as in Equation 5.55,

26
1 —2z¥3 === 962 5.96
z, > ( )

which represents the effect of core if the facings were homogeneous.
Assuming the core thickness for our laminate is the same as those in
Figure 5.13, the net effect of thickness increases and the presence of
core is simply the product of Equations 5.95 and 5.96:

26 ‘
3.375 X ===3.25 .97
> (5.97)

We can now make direct comparison between the sandwich construc-
tion and the solid laminate. This comparison can only be made for the
case of quasi-homogeneous material. For example, the ratio of the
absolute components of modulus between that in Equation 5.94 and
the same component in Equation 5.74 is

208.1/64.05 = 3.25

This agrees with the result of Equation 5.97. Similarly, we can find the
ratio of the normalized components between Equations'5.94 and 5.74:

92.52/96.08 = .962

This agrees with the result of Equation 5.96. The conclusion is that
homogeneous materials with or without honeycomb core can be scaled.
Plate thickness and core thickness can be obtained by proper ratios
from one construction to another. No such simple scaling will work for
laminated composites. They must be assessed on an individual basis.
Only in special cases can the calculation of flexural modulus by smear-
ing the laminated facing be approximately accurate. The parallel axis
theorem in the next chapter can determine this accuracy.

6. flexural modulus of angle-ply laminates

In the last section we saw that cross-ply laminates are orthotropic, or
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square symmetric when the number of ply groups approach infinity. We
will see in this section that angle-ply laminates with or without core are
generally anisotropic. A balanced, symmetric laminate is orthotropic in
its in-plane modulus but is anisotropic in its flexural modulus. The
reason is that the position of each ply is unique along the z-axis. The
shear coupling terms of a +6 ply cannot be cancelled by those of a —6
ply unless the positions of these plies are judiciously selected. We will
show -later that the shear coupling terms can be cancelled if we use
antisymmetric laminates. So there are two s1mple methods of obtaining

_orthotropic flexural modulus:

® Use on-axis plies only. This is the case of on-axis unidirectional or
cross-ply laminates.
® Use antisymmetric laminates. This will be dlscussed in Chapter 6.

The motivation to make laminates orthotropic (and symmetric) is
often driven by the availability of stress analysis tools. Most current
tools  are limited to orthotropic and homogeneous plates. It is un-
fortunate that the use of composite materials is limited or penalized by
the nonavailability of analytical tools. It is important to understand
how_.anisotropy and nonhomogeneity arise in composite laminates and
to what degree they can be manipulated to perform functions not
possible with conventional materials.

For angle-ply laminates the ply orientation can be

0, =+¢ or—¢ (5.98)

Figure 5.15 shows three possible piy groups, m = 4,8, and 16 of
angle-ply laminates.

| : —
® &
~b =
- ’ =] L)
[72)
,l____. U N ek il RO mp-3
m=4 m=8 m=/6
(a) (o) (c)

Figure 5.15 Angle-ply laminates with different number
of ply groups. Because of symmetry only the upper half
of the laminate is shown, .
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When ply orientations change signs, the cosine functions remain the
same, while the sine functions will change signs. The cosine function in
Equation 5.48 can be factored out as follows:

Vi = cos2s e = (=1)) (5.99)
Since n = 16, or t = 8, from Table 5.4

Vi

]—§3c032¢(1+7+19+37+61+9]+127+169)

cos2¢ ' (5.100)

Similarly, we can show

V) = cosd¢
For m =4 and the proper sign for the sine functions we have:
Vi= % (—1—7—19—37+61 + 91 + 127 + 169)sin2¢
= 3.
= Zstq) (5.102)
Similarly, we can show
*_ 3 .
Va =Zsm4¢ (5.103)
Form =8,
v = ]—§3 (—1—7+ 19 +37—61 —91 + 127 + 169)sin2¢
3.
= gsm2¢ (5.104)

(5.101) - ...
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Form =16,
vi= ]—23 (=1 +7—19 437 — 61 + 91 — 127 + 169)sin2¢
= isin2¢ (5.105)
16
It appears that
V;=3_S'm_2<_b,m=4,3,16,,,, (5.106)
m .
Similarly,
yr=3sindd . _4 8 16,...

(5.107)

The formulas for the flexural modulus for angle-ply laminates can now
be written in matrix multiplication form in Table 5.9.

table 5.9

formulas for flexural modulus of a solid
symmetric angle-ply [¢/—¢] laminate

/ U, Uy
oF U, cos 2 cosde
0% U, -cos2% cos4d
0,2 U, -cos4g
Dse Us - cos4g
D% 52 5in2p 2 sindg
% Lsinzg - sindg

X_ .. ¥
where D/./--D,//I
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Note the formulas for the flexural modulus of angle-ply laminates are
identical to those for in-plane modulus of angle-ply laminates as shown
in Table 4.7 with the exception of the shear coupling terms. These
terms vanish as the number of ply groups increase. Thus for quasi-
homogeneous laminates (as m becomes infinity), the in-plane and
flexural moduli are related by:

D = l—f- D; = ;17A"" (5.108)
or

Dy = %Aﬁ (5.109)
conversely,

di = L—fa,-, | (5.110)

We can thus compute the flexural modulus and compliance of a
specific angle-ply laminate.

Let
¢ = 45 degrees (5.1 1 1)
Our laminates for m = 4, 8, 16 are:
[454/=454)5, [45,/—45,] ¢, [45/—45],¢ (5.112)

The upper half of these laminates are shown in Figure 5.16. Using these
data for T300/5208 and 16 plies, we have

h, =125X107°m
_ _ -3
h o =16k, =2X 10°m (5.113)
h3 3 1 B
D16=D26=Ez—mU2 =;U2X109
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45
45 id =22
-45 45 >
we 0
45
-g5 45
| -45 £2
- SN PR WA (S E - -
m=4& m=8 m=/6
(a) (6) (c)

Figure 5.16 Stacking sequence of symmetric angle-ply

laminates with 45-degree angles. Ply groups increase
_ from 4.t0.16. Only the upper half of the laminate is

shown.

The flexural modulus and compliance for various ply groups are shown

as follows:
- 1 1 " 1o ]
56.65 4231 —128.5 3777 28.21 —85.73
m m
D} = 42.31 5665 1285 | Gpa Dy 28.21 3717 L8573 | Nm
m m
1 1 1 1
—128.5 —128.5 46.59 -—85.73 —85.73 31.06
m m - _m m n
(5.114)

Note as m increases, the flexural modulus becomes square symmetric.
We can invert the modulus for m = 4 and obtain the following com-
pliance, where both the normalized and the unnormalized are included:

4402 —25.70  —12.63 66.03 —38.56  —18.95
df=|-2570 4402 1263 | (TPay? dj=| -3856 6603 —1895 | GcNm)?
—12.63 —12:63 389 —1895 —18.95 - 5835

(5.115)
Form = 8§,
40,55 —29.17  —392 60.83 —43.76  —5.88
dj=|-=2917 4055 392 | (TPay’ dj=| 4376 6083 —s88 [ kNm)"
-392  -392  24.16 —5.88  —5.88  36.25

(5.116)
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Form = oo
d, = % a; (5.117)
where a;;h for our angle-ply laminate can be found in Table 4.9:
d, =:1—§a1 R =ﬁl~1207’ 39.9 X 10712 = 59.85 (kNm)™!
(5.118)

The other components of compliance can be calculated in the same
manner. We have

39.9 —29.8 59.85 —44.70

*

dj= | —29.8 39.9 (TPay! dii= —44.70 59.85 (kNmYy!

21.46 32.19

(5.119)

As the number of ply groups increase, the shear or normal coupling
terms -drop rapidly in both the modulus and compliance. The rate of
reduction-is greater in the compliance than in the modulus. Only when
m = 4 is the shear coupling significant. The compliance components 11,
22, 12 and 66 do not vary much as the shear coupling components
change. This means that the flexural stiffness of the laminate increases
as it approaches orthotropy.

7. ply stress and ply strain analysis

The ply stress and ply strain in' a symmetric laminate due to flexure can
be determined following the procedure for the in-plane stretching.
Figure 5.17 is analogous to Figure 4.4 for the in-plane behavior. The
process of determining the ply stress and ply strain is straight forward.
The motivation is to assess the strength of each ply within the laminate.
The strength calculation will be covered in Chapter 7.

The highest z for the i-th ply group in Figure 5.7 will have the
highest strain in each ply.group by virtue of Equation 5.10. It is

the highest strain components that will govern the strength of that

o SR N S Tt
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ply group. This is obvious if all components of the curvature have the

~ same sign, positive or negative. But it is not so obvious if the signs are

mixed. We will show later that regardless of the signs of the curvature
components, the highest z will govern their strength. This holds for
symmetric laminates under flexural loads.

L f +
) )
& B B
pd
1 , t.} -z ‘/‘3(’45) -, ‘/a‘;’“’
() ==*-O-= 0
L4 ¢
M \/ l / KN FEEN
(4 ¥ f * & (90) f %
. By . Z 4
¢) ——=»(d) —— (e)
In- Plane On - Axis On-Axis
Moment Curvature Strain Py P/yx /

at z Strain Stress

Figure 5.17 Ply stress and strain in a symmetric laminate under flexure:

From (@) to (b): Use moment-curvature relations in Table 5.2.

From (b) to (c): Use curvature-strain equation in Equation 5.10. Use top surface
of each ply group for the z-value.

From (¢) to (d): Use strain transformation to transform the laminate strain to
the on-axis strain.

From (d) to (¢): Use the on-axis stress-strain relation to determine the corre-
sponding on-axis ply stress.

Figure 5.17 outlines the process of going from applied moments to
the resulting ply strain and ply stress in a laminate. The initial moments
may be obtained a number of ways. Let us assume that the moments
are known. The simplest example is the case of a statically determinate
structure. One such example is the three-point bend test shown in
Figure 5.18, when the load is applied at the midspan. The maximum
moment is also at the midspan

“_PL

2 (5.120)
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For a beam with a width b, the distributed moments or moments per
unit width are

M PL
M, = == =M, = (5.121)
VT T 4b M, 6=0

From the moment-curvature relation in Equation 5.17,

PL
= d, M;=—d
k, 1My =7 du
k, = dy M, (5.122)
ke = de1M,
%I%
t ’ '
] 5
r * |
Figure 5.18 Three-point
bend test.

Let us assume that the laminate is T300/5208, [0,90;] ,:

P = 100N
L =.1m
b =.0lm

From the compliance of this laminate listed in Equation 5.71,
dy; = 9.36 (kNm)!
d,; = —.85(kNm)!

dey =0
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With the geometric and material properties above, we can immediately
calculate the following using Equation 5.122:

k, = J00X.1g36—7234m

4 X .01
100 X .1 -
= — " (—85)=—212m"! .
k, 4><.01( ) m (5.123)

The strain at the upper face of the beam (top of 0° ply group)
z = 8h0 =1X103m

2.34 X 1073

€ = zk,
(5.124)
€, = zk, =—212X1073

€ = O

The induced stress components at this upper face which have the
O-degree ply group are:

0y = OJ(CO) = 181.8 X 2.34 —2.89 X .212
= 424 MPa

0, = 0;0) = 2.89 X234—103X.212 (5.125)
= 4.57 MPa

0 = 0{0) =0

The transverse stress and strain components are neghglble compared
with the longitudinal components.
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The strain and stress at the upper face of the 90-degree ply group is

z = 4’10 =5X 10-3m
e, = 117%107
(5.126)
€, = —.106 X 10
€ — 0
o, = 0;90) = 10.3 X 1.17—2.89 X .106

= 11.7MPa

0, = 00 = 2.89 X 1.17—181.8 X.106 (5.127)
= —15.88 MPa

0s = 00 = 0

The stress distribution is shown in Figure 5.19.

z | B4
924
/mm —, /mm 457
7 -

‘—//. 7 — 15.88

zl 1 %z

i I 1 ) L. 1 i 1 -
o 200 400 MPo =-/0 10 MPao

Figure 5.19 Ply stress in a cross-ply beam at the midspan of a three-point
bend test.
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The deflection § in Figure 5.18 can be calculated from the beam
formulas in handbooks f .

= PL?
48E]

_ PL3

—mdll

(5.128)

3
_100x.1% g
48 X .01

= 1.95X 103m

The ply stress and ply strain analysis of any deterininate structure
can be duplicated exactly as the above. New variables are introduced as
follows:

® For different laminates, different compliance must be used.

® For different end conditions, such as a four-point bend test, the
moment in Equation 5.120 and the deflection in Equation 5.128
must be changed.

For laminate under complex boundary conditions, the process above
remains the same for the ply stress and ply strain determination. But
the deflection function w in Equation 5.5 requires a solution based on
the theory of plates. No simple relation like those for beams is
available.

Finally the ply stress and ply strain calculation is only the means for
strength determination. Again the appropriate failure criterion which
we will cover in Chapter 7 is required for the ply-by-ply examination to
ascertain the sequence of successive ply failures, from the first (FPF) to
the last or the ultimate. ‘

8. conclusions

The flexural stiffness of laminated composites can be derived following
the pattern for the in-plane stiffness. First the flexural modulus can be
related to the modulus of the constituent plies by some weighting
factors. The composite modulus of the laminate is not simply a linear
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function of the constituent plies. That was the case for the in-plane
modulus, but for the flexural modulus the outer plies will contribute
more than the inner ones. Flexural compliance and the equivalent
engineering constants can be derived by matrix inversion, and the ratios
or reciprocals of the compliance components, respectively.

Light weight core can be used to replace the laminate material near
the mid-plane. This is a very effective method of reducing the total
weight of the laminated plate while sacrificing very little in the flexural
stiffness. As the number of ply groups increases, the behavior of the
laminated plate approaches that of a quasi-homogeneous laminate. It is
very difficult performing scaling operation from one laminate config-
urations to another. In most instances, such scaling operation can only
be done if the laminates are quasi-homogeneous, with or without core.
To be safe, flexural modulus should be calculated based on the precise
stacking sequence.

A balanced laminate will have zero shear and normal coupling in its
in-plane behavior. Since each ply occupies a fixed position along the
z-axis, a laminated composite is usually anisotropic in its flexural
behavior.

The flexural stiffness of a laminated beam should be derived as a
special case of a laminated plate. The appropriate modulus of the indi-
vidual constituent ply must be included in the computation of the total
flexural modulus of the laminated plate. From this modulus, we can

,,,,, then_compute_the flexural compliance; from the compliance we can

compute the stiffness of a beam. This process was followed in Equation
5.21. It is not possible, on the other hand, to compute directly the
effective Young’s modulus of a beam from the Young’s modulus of
each constituent layer. A rule of mixtures equation, including the
proper weighting factors, will not result in the proper stiffness of the
beam. Composite laminates are two-dimensional bodies and only two-
dimensional theories are valid for the description of the stiffness
behavior.
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9. homework problems

a. What happens to the flexural modulus and compliance if the defini-
tion of displacement in Equations 5.6 and 5.7 does not have a minus
sign?

b. What happens to the flexural modulus and compliance if tensorial
shear strain is used instead of the engineering shear strain? The factor
2 in Equation 5.8 must be removed.

c. How accurate is the following rule-of-mixtures equation for esti-
mating the flexural stiffness of a beam?

nl2
E{ :.83 Z EO A —(t—1)°] (5.129)
n
t=c+1

where the terms are identical to those in Equation 5.48, except E(!)
is the Young’s modulus of the ¢-th ply. Compare the flexural stiffness
of solid cross-ply and angle-ply beams for various ply groups up to
infinity calculated from Equation 5.129 and those in Figure 5.12 and
Equation 5.114 et al.

d. We know from Chapter 4, Section 6, that quasi-isotropic laminates -
can be obtained from discrete multidirectional laminates (w/3, w/4 et

tained from large ply groups or m approaching infinity. But it is
possible to approach quasi-homogeneity with finite number of plies.
One stacking sequence discovered by Ernest R. Scheyhing (D.Eng
thesis, Yale University, 1965) calls for the following 24-ply sym-
"metric laminate:

[ —60/0/60, /0/—60/60/0/—60,/0/60 ] & (5.130)
Show, for a T300/5208 laminate, how close homogeneity is satisfied,
i.e., :

, 12
Ay =5 D (5.131)

_al.)..We also._know_that quasi-homogeneous_laminates. can be ob-
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How close is flexural isotropy satisfied, i.e.,

1
Des :E(Dn —Dy3)
(5.132)
D¢ = D36 =0

Is in-plane isotropy exact or appruximate? Plot the transformed
modulus from 0 to 90 degrees.

e. Label the coordinates in Figure 5.20 which shows the flexural
modulus, and bending and torsional stiffnesses of 16-ply 45-degree
angle-ply laminates of T300/5208. The bending and torsional stiff-
nesses are:

Er _ 1
b dy,
(5.133)
G __4
b de e

The torsional stiffness is based on a wide rectangular cross-section.
Also show the asymptotic value when m approaches infinity.

/. Find the load-deflection curve of a three-point bend test (centrally
located load) of the following beam:

[016/901615
T300/5208
h =8 mm (5.134)

L

10 cm
b =2cm

g. Determine the first ply failure (FPF) and the ultlmate usmg the
following maximum strain criteria:

€, = 83X1073
(5.135)

€ 3.8X 107

y
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Figure 5.20 Flexural modulus and stiffness of 16-ply 45-degree
angle-ply laminates of T300/5208. The abscissa is the number of
ply groups. (See Figure 5.15)

h. Repeat the problem above for [90, /0, ¢ ] ¢ laminate.

i. What is the natural frequency (the first mode) of the beams in Prob-
lems g and h? Use the density from Table 1.7 1600 kgm—3; and the
mass per unit length p = 0.256 kg/m. How close do these frequencies com-
pare with a hinged-hinged beam where

_ 7\1 V”l
w, = f- (5.136)

? Vd,u

where A, = 3.142 (from Handbooks)

j. The use of hybrid composites is an effective means of optimizing

laminates. Hybrid leaf springs with all O-degree T300/5208 and
Scotch-ply 1002 can be made with different ply ratios. Assuming
cost ratios of the two materials to be 10, 5 and 2 (T300/5208 is
higher), is there a cost-effective ply ratio from the bending stiffness
viewpoint? For simplicity, assume a total of 100 plies is needed. All
Scotch-ply is located in the core, and all T300/5208 in the facing
material.
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nomenclature

b = Width of beam, in m

D, i = Flexural stiffness modulus of multidirectional symmetric
laminate including core, in Nm; i,j = 1,2,6

D'l.’l'.‘ = Dy/Iror 12D;;/h* when z, = 0, in Pa

d,-j = Flexural compliance of multidirectional symmetric laminate,
and the inverse of D;;, in (kNm)™;ij=1,2,6

d,‘;; = I*d,'j, in Pa—l

Eif = Flexural engineering constant, in Pa;i=1,2,6

h = Total thickness of laminate, including core, in m

h* = h*[1—2z}3]/12,inm3

h; = n;h, = Total thickness of the i-th ply group;i =1 tom

hy = Unit ply thickness, in m

I = Moment of inertia, in m?

ki = Curvature, inm™;i=1,2,6

M; = Moment, in N;i = 1,2,6

m = Total number of ply groups in a laminate

n = Total number of plies in a laminate including core depth -
measured in number of plies ,

n; Total number of plies in the i-th ply assembly; i= 1 tom

@(?) = Modulus of the ply assembly with 6 orientation;ij = 1,2,6

L = z;/h,or = i

U; = Linear combinations of modulus;i =1 to 7

Vi = Geometric factors in formulas for flexural modulus; i =1 to
4

v = 121k

Z. = Half depth of honeycomb core, in m

2 = 2z./h = Total core to total laminate thickness ratio

Z; = Location of ply or ply group, inm

g Flexural coupling coefficients

chapter 6
properties of general laminates

General laminates are free from midplane symmetry. They can be
asymmetric or antisymmetric; and can be of built-up and hybrid con-
struction. A new coupling between stretching and flexure is introduced.
The modulus and compliance matrices increase from 3 X 3 to 6 X 6.
But the same methodology that governs the symmetric laminates is
extended to the general laminates. Unique opportunities not available
with conventional materials can now be exploited to produce novel
performances. The parallel axis theorem is a powerful tool for deter-

- mining the modules of general laminates.-
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1. index and matrix notations

We have used subscripts for the components of stress, strain, modulus
and compliance since the first chapter. We have also used the matrix
multiplication tables to represent stress-strain relations, transformation
relations, and others. Having had experience with the longhand nota-
tion, we will now introduce a shorthand notation that can efficiently
represent the equations that we have seen earlier.

For example, in place of the stress-strain relation in Table 3.1 we can
write the same relation in a summation as

j=1,2,6

There are two types of subscripts in this equation. First, the subscript i
is called the free index. It assumes values of 1, 2, 6 in this equation. The
rule that govems this subscript or index is called the range convention
defined as follows:

A FREE INDEX CAN APPEAR ONLY ONCE IN EACH TERM OF AN
EQUATION AND ASSUMES A RANGE OF VALUES SPECIFIED.

Secondly, subscript j appears twice on the right-hand side of this equa-
tion (the subscript j under the summation sign is not part of the main
relation), we now introduce the summation convention of the index
notation:

REPEATED SUBSCRIPTS OR INDICES CAN APPEAR ONLY IN
PAIRS IN'EACH TERM OF AN EQUATION AND A SUMMATION
OVER THE RANGE OF THE INDEX IS IMPLIED. THE SUMMA-
TION SIGN CAN THEREFORE BE ELIMINATED.

With these two conventions, Equation 6.1 becomes:

0; = Qijej» Lj=1,2,6 6.2)

Note the range for both indices covers 1, 2 and 6. We can recover the
first row of Table 3.1 from Equation 6.2 wheni=1,j=1,2,6;1i.e.,

0, = Q1161 + Q1262 + 01666 (6.3)
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Similarly, wheni = 2,j = 1,2,6, we recover the second row; wheni = 6,
j = 1,2,6, we recover the third row. If we leti = x, j = x,y, we have,

dx = Qxxex + Qxyey (604)
Thisis the first row of Table 1.6. ' ‘
The index notation is efficient because one equation such as Equa-
tion 6.2 can replace three algebraic equations in Table 3.1.
Similarly, the stress-strain relation in terms of compliance is simply

€ = Syoj Li=1260rxy.s (6.5)

For the in-plane behavior of symmetric laminates, we can define

N;= [ oz (6.6)

Subétitﬁting the stress-strain relation in terms of stiffness modulus,

N; = [ Qye; dz ‘ (6.7)

If we assume that the in-plane strain is constant, it can be taken out of
the integral sign; then we can define the in-plane modulus as:

Ay = [ 0dz . ~ (6.8)

Then the in-plane stress-strain relations are:

N; = Aj€? . (6.9)
€ = ayN; (6.10)

These relations are shown in longhand in Tables 4.1 and 4.2, respec-
tively.
For the flexural behavior of symmetric laminates, we can define
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M; = f 0,zdz 6.11)
From which we can define the moment-curvature relation:
!

M; = Dyk; (6.12)

and the flexural modulus:

D, = J 0,z%dz (6.13)
The moment-curvature relation in terms of compliance is:

k.

1

= d;M; (6.14)

These relations are shown in Tables 5.1 and 5.2, respectively.
The symmetry condition such as

Q12 =021, 16 =Us1, Q26 =Us2 (6.15)

can be expressed as

0y =0y (6.16)

Similarly, we have

S =S Ay = Ay Dy = Dy,
6.17)
a; = ay dy = dy

Instead of the index notation, we can use a matrix notation to
express the same relations above. Bold face letters (which can also be
represented by the underlined letters) represent matrices. The indices
can be eliminated. Equations 6.6 et al. can be rewritten as:

N=fadz (6.18)

A = [ Qa (6.19)
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N = A eo | (6.20)
©0=aN (6.21)
M= [ o2z (6.22)
gy (6.23)
D =f Qz2dz i (6.24)
Kk =dM | (6.25)

Matrix multiplication is implied when two matrices are placed side by
side. ;
Notations are artificial and arbitrary. Symbolically they convey
mathematical operations and meanings. Each notation has its advan-
tages and drawbacks. The selection of a notation is often dictated by
the particular problem on hand as well as the subjective judgment of
the user. Basically, notations are intended to help rather than to hinder
communication and understanding. When in doubt, we should resort to
the conventional, longhand operations. This will prevent the misapplica-
tion or misinterpretation of a notation. In the study of general lam-
inates, we will use both index and matrix notations. :

2. stiffness and compliance of general laminates

General laminates are normally unsymmetric. In our context, they can
be antisymmetric and hybrid. General laminates have not been used
extensively to date for a number of reasons. First, the unsymmetrical
laminate will warp after curing and cool down. It may be difficult tb
meet the dimensional control of a structure. Secondly, the analysis of
unsymmetrical plates and shells is more difficult than that for sym-
metrical structures. Designers feel less experienced working with the
unsymmetrical construction and are therefore reluctant in using such
unfamiliar construction. But there are many familiar general laminates
which include built-up constructions where material cross-sections vary
across the depth of a beam or plate. Hybrids are another form of
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In place of the longhand derivation from Equations 6.28 to 6.33, we
have from Equations 6.7, 6.2 and 6.27:

N, = [ 0y +zk))dz (6.34)

J otz + [ 0,k zdz (6.35)

Since €° and k are independent of z, they can be taken out of the
intcgral signs,

No=[f 0ydz) & + [ [ oz & (6.36)

where
By = [ Q;zdz (6.38)

This is the coupling modulus, which links curvature to stress resultant.
In symmetric laminates, we have by definition:

Q,'j(z) = Q,‘,‘(_Z) ‘ (6.39)
This can be seen in Figures 5.1 and 5.2. The ply orientation is sym-
metric with respect to the midplane. The modulus is an even function

in z. We will first split the integration in Equation 6.39 in two parts:

0 i

By = f Qil-zdz +
—h|/2 0

—~h /2 h/2
- Qyjzdz + f Qyjzdz (6.41)
o 0

2
Q;zdz (6.40)

properties of general laminates 225

By virtue of the symmetry conditions of the modulus in Equation 6.39,
we can change z to —z in the first integral in Equation 6.41, then

hf2

h/2
By =— f " Qzdz + f Q2dz=0  (6.42)
0

0

We can also show a coupling between in-plane strain to moment as
follows:

From Equation 6.11

M; = [ ozdz (6.43)

Substituting Equations 6.2 and 6.27

M, = fQ,.,.[e;’ + zk;] zdz (6.’44)

[f Q"fm] i + [f Qi/Z’dZ] ki (6.45)

Note the reappearance of the same coupling matrix here as that in
Equation 6.37. We can now combine Equations 6.37 and 6.46.

Ni = Aiiel? + Bl]k
{ (6.47)

Mi = B,IEIO +D,]k]
These six equations represent the stress-strain relation in terms of
modulus of a general laminate. The modulus is a 6 X 6 matrix. These
equations when expanded into longhand expressions are:
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general laminates where plies of different materials or different con-
struction of the same material (woven vs nonwoven) are combined.
Then there is a class of antisymmetric laminates which have unique
properties.

We intend to show in this chapter that general laminates are no more
uncontrollable than the symmetrical, homogeneous laminates. The
same theory and material property data control the behavior of all
laminates, General laminates have properties which can be effectively
utilized to produce unique performance. In many applications, only
minimum gage laminates are required. Unsymmetrical laminates can
save 50 percent in weight. Other applications may call for predeter-
mined warpage. Use of antisymmetric construction can provide unique
coupling. We are therefore not in a position to write off general lam-

inates just because they are more difficult to analyze than symmetric.

laminates.

The key feature of general laminates lies in the additional degree of
coupling, as we will see presently. The basic behavior of this class of
laminates is governed by the strain distribution across the thickness of
the laminate. By combining the previously assumed strain for both the
in-plane and ‘the flexural deformation, that is by taking the strain dis-
tribution up to the linear term, we will have

€1(2) = €9 + zk,
€(2) = eg + zk, (6.26)
€¢(z) = €S + zks
In index notation, we have
€,(z) = €/ + zk; (627)

Unless otherwise stated, the range of index is always 1, 2, and 6, ori =
1,2,6. The assumed strain components are shown in Figure 6.1. No
reference - is made concerning the material property. The strain, as
always, is defined by geometry with no direct connection to equi-
librium or material property. Stress, on the other hand, must satisfy
equilibrium; stress-strain relations must reflect material behavior and
property. The assumed strain is applicable to all materials, homo-
geneous and hybrid composites. ‘
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f ‘
173 AN Lks
h e — S ]

S %

Figure 6.1 Assumed linear strain distributions for general
laminates.

We will now substitute the assumed strain in Equation 6.26 into the
definition of stress resultant, we have

Ny =S Qi (€ 42k, ) +Q1a1€5 + 2k, ) + Oy g€ + 2k ] )dz

(6.28)
=f Q,,dz€8 +fQ12dze‘§ +fQ16dze‘;
' (6.29)
+'/'Q“zdzkl +f Q;.2kzk, —l-','szdzk6
=A €] + A€ +Al6€2 + By ky + Bk, +Bysks
(6.30)
Similarly
Ny =A,,€] +Azz€f + Azgel +Byrky + Byyky +Brgks
(6.31)
Ng = Ag1€5 +Agr€3 +Agee€? + Bk, +Bszk2 + Bgoke
(6.32)
where the components of the new coupling modulus are:
By, =fQ112dZ, B, =fQ222dZ, B, =fQ122dZ
(6.33)

Bge =f Qs62dz, B,y =fQ162dZ» B, =fQ262d2
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N, =A4,,6 + A12€5 + A€
N, = Ay, +A3:€ + As6€
N¢ =Ag1€5 + As2€) + Age€s
M, =By, + B¢ + B s€s
M, =By, + Byy€5 + B, €}
Mg = Bg €S + Be,€3 + Beo€s

+ Bk,
+ By, k,
+ Bg1 ky
+ D,k
+ D, k,

+ Byqk,
+ By ks
+ Bga ks
+ D, k,
+ Dy, k,

+ Dga Kk,

+ Beks
+ B, ke
+ Beeks
+ D, eke
+ Dy ke

+ Deeke

(6.48)

Or, in matrix multiplication table we have in Table 6.1 the stiffness and

its inverse, the compliance, of a general laminate.

table 6.1 .
stiffness and compliance of a general laminate
Ne M, Mz M,
€ f el k K ke N N Ns M Mz Ms
! o |
N Ay Az 46 Il 8, B2 G € 2, a % :"9// B2 B
2 a5 a Loz B,
N, Ay Azz Aze! B 8,, b6 € % %z 6| Bz Loz Bzs
Ne Ags; Asz Ass' Bs Bsz Gos & % %2 %6 :/96/ Fsz Py
Sl e e m— - —
M | 8 82860, 02 s b\ B B e G Bz G
I
‘Mz By oz Bre) Oy Doz Dos k2 B oz 5oz By %z P26
|
' 8, sz O
Ms. Be1 Bez Bes! Os1 Dz Uos ke Bis Les /96511 51 P62 P66
Both 6 X. 6 matrices are symmetric. This requires that one coupling

compliance matrix is the transpose of the other.

As a comparison we show in Tables 6.2(a) and (b) the modulus and
compliance of symmetric and homogeneous anisotropic laminates,
respectively. In the homogeneous laminate, the flexural components are
directly related to the in-plane components.
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table 6.2(a)
stiffness and compliance of a symmetric anisotropic laminate
€ Pk ke k NN N M M M
1 ]
N, 4, A, A/s: o 9, 0O afc:
! I
A A A, Azsi g T 5 aml
‘ I
Ne As) Ag2 ‘455: 4 9s; sz Yss)
_________ b———————— ——————————p————————
M/ }01/ D/: ch k/ :d// 92 dns
]
M, i 4, 0, O A E d2) Gz 6
|
M :Ds Gre Dss s :ds/ Js2 s
1
table 6.2(b)
stiffness and compliance of a homogeneous anisotropic laminate
€ € €€ Kk ky kg N N Ns M M M
| ]
N, A, A, A/sl € 9, 9 a/sll
: |
N, T Aza: < T2 Ggp azs:
| I
Ng Ay Asr Agsl e—so Os; Y9sp Ygs)
_________ ’———....————— _______.____T____._.__.___
M ' 4 I
: »? U
M, 74 4, | /?"ii
|
|
" ! % |
. Or, in matrix notation,
N=Aee +Bk (6.49)
M=Be +Dk (6.50)

or in terms of a matrix multiplicatidn table we have Table 6.3.




o)

228 introduction to composite materials ‘ properties of general laminates 229

table 6:3 . . . Dy, Dy, Dy
generalized stress-strain relations in terms ; -
of stiffness modulus

° k «? & D=D;= D,y D;, Dy - (6.55)
€
N A B N ——'Z) l’ N D¢, D62 Des
_____ b
M 6 o M N || Nm '
: where i,j = 1,2,6.

We need also to define the inverse of matrices. We have

The matrix quantities above are column or row, and square matrices as

— 4-1 = p-1 :
follows, in curly, and square brackets, respectively: a=A",andd =D (6.56)
(N, ) 'M ) These inverse relationships are implied in Tables 4.1 and 4.2 for the
! ! in-plane behavior; and in Tables 5.1 and 5.2 for the flexural behavior.
' We now will find the generalized stress-strain relation in terms of com-
N=N. = M=M.={M 6.51 :
N; Nats b 2 ¢ ) pliance; which is the inverse of the 6 X 6 modulus matrix shown in
N M Table 6.1.
L8 6 Premultiplying Equation 6.49 by the inverse of A or simply a,
( ) =
'e‘; ) k, aN aAe® + aBk (6.57)
©=e={e |} k=k={k (6.52) f Since
aA = 1, where 1 is unity matrix (6.58)
We have
- . : € = aN—aBk 6.59
Ay Ay A ; ( )
A=A,= Ay, Ay, Ay (6.53) Substitute.this into Equation 6.50, we have
M = BaN — BaBk + Dk .

| 461 As2 Aso _J a a (6.60)
= BaN + (D — BaB)k (6.61)

Rp. --We-can show-the-last-two-equations-in a tabular form in Table 6.4.
B =B;; = B,, By, B (6.54) . They are useful for structures with fixed cylindrical cross sections such
as tubes and pressure vessels.

Bgy  Bea Bss -
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table 6.4 pr P

generalized stress-strain

relation in terms of N and k ° a -ab
M Ba  D-8Bab

The relationship in Table 6.4 is a partial inversion of that in Table 6.3.
We now will derive the complete inversion.

Continuing with our matrix algebra, we can premultiply Equation
6.61 by (D-BaB)™! | then after transposing we have

k =—D —BaB)™'BaN + (D — BaB)'M (6.62)

Substituting this into Equation 6.59, we have

e€® = aN —aBk
= [a + aB(D — BaB) 'BalN —aB(D — BaB)*M (6.63)
= aN — M (6.64)

We can now show the last two equations in Table 6.5(a) which is now
the complete inversion of Table 6.1 or 6.3; i.e., the independent vari-
ables are N and M. The material coefficients in this table are the com-
ponents of compliance. o

table 6.5(a)
generalized stress-strain relation in terms of
compliance

N M

€° | a+aB(D-BaB)~'Ba -aB(D-BaB)”’
k - (D-8a8)”"' Ba (0-8a8)~"'

The two coupling matrices are transposed of each other. They need not
be symmetric.
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It is useful to designate the compliance in Table 6.5(a) in Greek letters
in the same matrix multiplication format. '

table 6.5(b)
generalized stress-strain relation in terms of compliance in
greek
M N M
i A v i
2 iy Attty il
& L S ¢ /AN
)

" This table is the inverse of Table 6.3. This can be expanded like Equa-
tion 6.48 for the modulus. This is shown as follows:

€ = a Ny +a,Ny +a6Ng + 8y My + B,,M, + B,6Ms

€ =0y Ny + 0paN, + ap6Ng + B, M, + B2 M, + BreMe

€ =g 1Ny + aga Ny + ag¢Ng + 61 My + B, M, + BssMs
(6.65)

ki =B 1Ny + By 1N2 + B Ne + 8, My + 8 ,M, + 8, ¢Mg

ky =BiaNy + ByaNy + BgaNg + 85, M, + 8,.My + 6,6Ms

k3 =B1eNy + BrgNo +-BsNg + 86 1My + 86, M, + 8g6Mg

This equation is also shown in Table 6.1 together with its inverse, the
modulus. Note that in the absence of coupling, -

B =0
B =0

the equations in Tables 6.5(a) and (b) reduce to those of the uncoupled
or symmetric laminates of previous chapters, and Table 6.2(a).
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€ = aN
a=a
(6.66)
k =dm
6 =d

These relations are valid only for symmetric laminates. They are not

valid for general laminates, i.e.,

o F+aq
(6.67)
S #d

3. evaluation of components of modulus

We will now -evaluate all the components of modulus listed in Equation
6.48 and Table 6.1.  These components of modulus are evaluated by
performing the following integrations:

ni2
(A, B; D;/] = f |, Oylhaldz (6.68)
~h/2

This equation is written with the implied convention that each term-in
the bracketed quantity on the left-hand side of the equation has a
corresponding term in the bracket on the right-hand side of the equa-
tion. For general laminates, the limits of integration is from —4/2 to
h/2. This is different from the limits for the symmetric laminates from
the midplane (z = 0) to the top face of the plate where z = h/2. If each
ply consists of homogeneous materials, with even number of plies we
can replace the integration by summation as follows:

nf?2
Ay = ho Z QP 11— (t—1) (6.69)
t=1—n/2 ‘

. (continues)

§
e SR A v DRSS TR L S
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n2 n/2
B;j _—20 QP (2 — (t—1)?]
t=1—n/2
h3 ' nf2
Dy =— 0P [ —(—1)°) (6.69)
3 t=1—n/2 (concluded)

The modulus of general laminates is proportional to the modulus of
each ply multiplied by the weighting factor that appears in the bracket
of the equation above. A similar weighting factor was used for the
evaluation of flexural modulus in Equation 5.49. The terms used in
Equation 6.69 are defined in Figure 6.2. Index ¢ is the ordinal number
for individual plies as they go from 1—n/2 to n/2, where n is even and
equal to the total number of plies. It is further assumed that all plies
have the same thickness. With the assumptions above, we can show the
numerical values of -the-weighting factors in EQuation 6.69 for a general
laminate up to 16 plies thick. This is shown in Table 6.6.

n
f:
| ns2-th above | z
: A 2]
L a2
2nd - above Py
MID /st above re0 -
PLANE /st below posy
2nd belo
ud 1=-2
. . r= _n
| n/2-th below | 2
, &

Figure 6.2 Nomenclatures for general laminates
with even plies. Summation in Equation 6.69 is
indexed from top surface of each ply;i.e., from
t=1-nf2tot=n/2.
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table 6.6
weighting factors for general laminates

t—(@—1) 2 -1 £ —@-1)?

Ply Order t “ ii) (B,-j) Dip)

8th above 8 1 15 169

7th above 7 1 13 127

6th above 6 1 11 . 91

Sth above S 1 9 61

4th above 4 1 7 37

3rd above 3 1 S 19

2nd above 2 1 3 7
mid-  1st above 1 1 1 1 mid-
Plane st below 0 1 -1 1 plane

2nd below -1 1 -3 7

3rd below —2 1 -5 19

4th below =3 1 -1 37

Sth below —4 1 -9 61

6th below -5 1 —11 91

7th below —6 1 —13 127

8th below -7 1 —15 169

Note that the numerical values for the in-plane modulus is unity; the
in-plane modulus is independent of the stackingsequence. This was true
for the symmetric laminates; this is also true for general laminates. The
in-plane modulus is a function of the volume fraction of the constituent
plies. The positions of the plies do not affect the in-plane modulus.

This, of course, is not true for the coupling and flexural moduli. The
weighting factors increase as they go away from the mid-plane. This can
be seen by the numerical values in the last two columns of Table 6.6.
The values for the coupling modulus are antisymmetric with respect to
the mid-plane. The values for the flexural modulus are symmetric with
respect to the mid-plane. These weighting factors as functions of the
ply ordinal number ¢ are plotted in Figure 6.3.

The evaluation of the modulus of general laminates can also be
achieved by using either the direct summation in Equation 6.69, or the
geometric factors, the V’s, as was done for the in-plane and flexural

AR A A Bmnn g
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Ply Order Ply Orager
R .
€ [ - —0 6 b———0
4L < 4
[ f———CQ
L 5 —o
9-7-5-3 S5 ° [Eo-0F 2R [ 0-1)°]
L i [ L s bl J L. s . L] |
] od/7 3 &5 7 9 o 40 80 120
o—-4-2 -2 o
S — P D
I , pooor———0
_6, e e ...5 e ee——i 0 B
O
(a) (b)

Figure 6.3 Weighting factors for coupling and flexural moduli. They are shown
in (@) and (b) respectively. The factors are antisymmetric for coupling modulus;
symmetric, for flexural modulus.

modulus earlier. The advantages of using the Vs are:

® Close relationship between the formulas for the modulus and the
multiple-angle transformation equations.

® The geometric parameters of a laminate such as the stacking
sequence and unit ply thickness are embodies in the V’s. If a
different ply material is used or the same ply material changes
properties (due to temperature, for example) the V’s are not
affected. - »

® Four of the V’s are also used for the calculation of the non-
mechanical stress resultants and moments due to temperature
change and moisture absorption. The V’s again reflect the geo-
metric parameters of a laminate.

The limitation of the use of V’s is that the material of the ply must
remain the same.  This, of course, would not be the case of hybrid
composites. In place of the summation in Equation 6.69, we can use
the V’s in the following equations for the evaluation of the modulus of
general laminates. Taking a typical component of this stiffness modulus
for symmetrically located core:
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]2 » :
(A,,.B,,.D11] =f 0., 112",221dz (6.70)
th —h/2 IR
h/2 671
=f [U; + Uycos20 + Uscosd0])[1,2,2% 1 dz .
—h12

hl2 ’
v hl2 []’2,22](12'{" sz ‘ Cosze[],z,z2]dz .
1 —n/2 —h/2

hl2
+ U, f cosdf(1,z,221dz (6.72)
—h/2

= Ul [h’o’ﬁf_] + Uz[VlAerBerD] + U3[V2A.V28'V2D]
2 (6.73)

Similarly we can obtain the other components of the modulus as
follows:

' I h3-l Vipl +U [V 4 V2D]
Ay5,B22,D22] = Uy | R0, = —U,[Via,V18ViD 3[V24,V2B
[ 2222 2 vl i
-
[A12,B12,D12] = Ua h’o’fﬂ —Us[V24.V28. V2Dl (6.75)
[ ] P
[466.B66,D66] = Us h,O,‘l‘E' = U;3[V24,V28.V2p] - (6.76)
: 77
UreBieDisl = U VanVsn¥snl + UslVanVan Vsl (6.77)

[426,B26.D26] = %Uz[VaA,VaB,Van] —Us3{Vsa,Vap Vap]

(6.78)
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where the geometric factors are:

R T h/2 o
Vig = f cos20dz, V,g= c0s20zdz, oni/. cos20z%dz
—h/2 —h/2 —h/2

- (6.79)
h[2 h/2 h[2 ‘
VZA :f cos40dz, : V2B =f COS402dZ, V2D = 0054022(12
—h/2 —h(2 —h/2
(6.80)
h/2 hl2 h/2
Via =f sin20dz, V,g =f sin20zdz, V3p = sin202%dz
—h/2 —h/[2 —h/2
(6.81)
h[2 h/2 hl2
Vaqg = f sind0dz, Vg =-/. - sindbzdz, Vap = f sin40z%dz
—h[2 —h[2 _ —h/2
* (6.82)

The formulas for the in-plane and flexural modulus are exactly the
same as those in Tables 4.3 and 5.3. We only need to change the limits
of the integrals in Equation 5.40. The location of the core may not be
symmetric. The simple core/thickness correction such as 2* does not
always exist. We present the formulas for the coupling modulus in
Equation 6.73 et al. in matrix multiplication in Table 6.7. The lack of
invariants is a key feature. All components of this coupling modulus
can change sign.

table 6.7

formulas for coupling modulus of general
laminates with symmetric core

Y Us
8y Vig Ves
Bz Vi Vs
8,z ~Vas
Bse ~Vas
-7 ?/ Vs Vaes
B2 2—, Vis Vs
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Only the volume fraction of ply orientations, not the lack of mid-
plane symmetry, affect the in-plane modulus of a general laminate. The
graphic solutions in Figure 4.11 and the other formulas in Chapter 4
remain valid. The in-plane compliance, however, is sensitive to the
stacking sequence of the laminate. For a general laminate the in-plane
compliance is given in Table 6.5b and repeated here

a=a +aB(D — BaB)™ Ba (6.83)

Note the presence of the coupling matrix. Only in the case of a sym-
metric laminate

a=a (6.84)

Again we can show the integration of the V’s from Equation 6.79 to
6.82 can be replaced by summation if each ply consists of homo-
geneous material. This is done for a typical value of V as follows:

m
VlD = _;. Z coszei[z?— 21.3_1] (685)
i=1

Again the quantity in the bracket can be expressed in terms of the
ordinal number of the plies and this is done as before and the result is

B3 nl2
Vio = c0s20,[3 — (t—1)?) (6.86)
t=1—n|/2

where index ¢ is defined in Figure 6.2, and the value in the bracket is

given in Table 6.6. '
The V’s for the coupling modulus can also be 1_-eplace_d flrst by a
summation then by the ordinal numbers of the plies. This is done as

follows:
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hl2
Vig = f cos20zdz - (6.87)
~hl2
m
=1 ) cos20(z7 —z7_,] (6.88)
i=1
n2 nf2 ;
= .2-‘-’- cos20,[1? — (1—1)?) (6.89)
t=1—n/2

Note that the weighting factors in the equations above are shown in
Table 6.6 and Figure 6.3.

4. unsymmetric cross-ply laminates

We will calculate the stiffness and compliance of a class of cross-ply
laminates made of T300/5208. We will first examine a 16-ply laminate.
The minimum number of ply groups is two, the laminate will have eight
O-degree plies in the lower half of the laminate and eight 90-degree plies
in the upper half; see Figure 6.4(a). We can increase the ply groups to
four which will have four plies at zero followed by four plies at 90 in
the lower half of the laminate, then four plies of zero and four plies of
90 in the upper half; see Figure 6.4(d). As the number of ply groups
increase, we will examine the effect of this on the modulus and com-
pliance of the cross-ply laminate. In the limit as the number of ply
groups increase we should recover the quasi-homogeneous laminate.
The modulus of cross-ply laminates can be calculated using Equation
6.69 and the numerical values in Table 6.6. There is no need to cal-
culate the in-plane modulus of laminates because the same rule of mix-
tures equation for the symmetric laminates is applicable to the general

~ laminates. We would therefore concentrate on the coupling modulus

and the flexural modulus. There are two ways of calculating the
coupling and flexural moduli from Table 6.6. The first method is to

follow Equation 6.69 precisely, and the laminate shown in Figure
6.4(a) is
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(05/90s1 1

h2

O — — — — —
By == (@ (1S—13-11—9 75 3-1)

+0,,(1S+13+114+94+7+5+3+1)]

h;
= 643- ["'Qxx + ny]
Let h =125X10°m
8h, = 103m
O,y = 181.8 GPa

0,, = 103GPa

1073 =—85.7 kN
B =-T(—181.8+10.3) 85.7
— 1905
90, o
90g 90,
, % O
hf— - %
904 o
s 90,
O 5
=2 m=4 m=8
70) (b) (c)

Figure 6.4 Unsymmetric cross-ply laminates with different
ply groupings. This particular change in grouping is done by

subdividing each ply group into two sub-groups.

(6.90)

(6.91)

(6.92)

(6.93)
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There is another way of using Table 6.6 for the same cross-ply
laminate. This is done by treating each ply group as a new unit ply.
Then the effective unit ply thickness in Equation 6.69 in this case is
increased eight fold. The weighting factor now will be —1 for the
O-degree ply and +1 for the 90-degree ply, as compared to —64 and

+64 respectively. With this method, we can arrive at Equation 6.91
directly.

If the ply group is doubled, the laminate now shown in Figure
6.4(b) is

[04/904/04/90414 or [04/9041,7 - (6.94)
Using the first method:

2
Biy =2 (01513 —11=9)+0,,(=7=5=3—1)

+ Q0 (1+34+5+7D+0Q,,(9+11+13+15)]

32h2 ‘
- 2 [—Qxx + Q)] ' (6.95)
= —42.8 kN | (6.96)

This is one half of the value in Equation 6.93. Using the second
method:

The equivalent unit ply thickness = 4, (6.97)

(4h,)?
= ) [f3Qxx—ny + Oxx +3ny]

11

32n2 S
== [—Qxx + Q)] (6.98)

This is the same as Equation 6.95. There is a fundamental difference
between the coupling modulus and the in-plane and flexural moduli in a
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general laminate. The principal components of the coupling modulus
can be negative. This does not violate materials stability becal_lse all
components of the coupling modulus are off-diagonal terms in the

6 X 6 matrix in Table 6.1. _
Since the Poisson and shear components are equal, i.e.,

‘ Oy = o5 (6.99)

— n90)
Q§s0) - Q.gs

Then
B12 =B66 =0 (6-100)

for all cross-ply laminates. Similarly, since shear coupling is zero for
on-axis plies,

Bl6 =B26=0 (6.101)

For flexural modulus, it is easier to use the second method (the
equivalent ply thickness method). From Equations 6.69 and 6.90

(8n,)° 1
Dyy = —%= [Qx +0y,) = 3(181.8+103)  (6.102)

= 64.0 Nm (6.103)

From Equation 6.94 for the 4-ply group laminate:

4h,)® |
Diy === 170ux + Qyy + Qux +70),1 (6.104)
= 64.0 Nm (6.105)

Note that flexural modulus is not affected by the number of ply
groups. This is because the weighting factor is symmetric (see Table 6.6

and Figure 6.3) and the stiffness of unidirectional plies is also sym-.

metric with respect to the material axes. The resulting stiffness of
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unsymmetric cross-ply laminates is shown in Figure 6.5. The ply group
number m has effect on the coupling modulus B only, and m does not
appear at all in A and D.

e & N M
N o | .m_ 1 _/
N |Lm i Y. A .
. v P A
im N_ ' Nm
& L Lk kK N, N Ny M, M, M,
~/7/ 0 |
W, 192 57 & | 129 -039 73
b '
N, 57 192 1 LEE & |-039 129 | -173
[ |
Ng /14.3| &f 697
= = —— . - —— e ——— ______;_.'.___;._.__
M, =121 | 64 1.9 4 /7.3 138.8 -1/
m 1 |
My 2t /964 k2 ~173 -1/ 388
| [
M | 4.7 ke : 209
1

Figure 6.5 Stiffness and compliance of T300/5208 unsymmetrical 16-ply cross-ply
laminates. The stiffness is for all m values although m affects only the coupling
stiffness. The compliance is for the case of m = 2; see Figure 6.4(a). The physical
dimensions are also shown.

We can compare the A matrix in Figure 6.5 with the in-plane
stiffness of the laminate [0/90]s in Equation 4.51, we see they are
identical. There is no influence on this stiffness by the number:of ply
group, or with or without the midplane symmetry.

We can also see that the D in Figure 6.5 is equal to the flexural

" modulus of a quasi-homogeneous [0/90] laminate shown in Equations

5.69 and 5.74. They are identical because for this particular laminate
the weighting factor in Table 6.6 for D is symmetric with respect to the
midplane. The 0 and 90 degrees are so located in Figure 6.4, their
contribution to the flexural modulus is not sensitive to their position,
i.e., [0/90]  or [90/0] 7, or to the number of ply groups if they change

- ‘-g according to the pattern in Figure 6.4. If we have a laminate such as
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[04/905/04 11 the flexural modulus will be highly sensitive to the
stacking sequence, although the in-plane modulus will remain constant.

Since the flexural modulus is equal to that of a quasi-homogeneous
laminate, we see that Equation 5.109 is valid

B
Y]

A (6.106)

D; = ij

—
[\S)

where 2 = 2 X 1073 m for our unsymmetric laminate in Figure 6.5. This
equation is the necessary but not sufficient condition for a quasi-
homogeneous laminate. The other condition is for B = 0; i.e. no in-
plane and flexural coupling. We may call this general laminate pseudo-
homogeneous.

Being an unsymmetric laminate, the compliance in Figure 6.5 will be
affected by the presence of the B matrix. The inequalities in Equation
6.67 are valid. We can see this if we compare the following:

@, = 12.9 (GN/m)™

5.205 (GN/m)™

il

a,
The latter is taken from Equation 4.51. Similarly,

811 = 38.8 (kNm)™

dy, = 15.62 (kNm)™!

The latter is taken from Equation 5.74. It is interesting that the com-
pliance in Figure 6.5 is also pseudo-homogeneous because

_ 12
8;i 2 oy (6.107)

and B is not zero. Equation 6.107 is analogous to Equation 5.110 for
truly or quasi-homogeneous laminates.

Typical results of the selected components of stiffness and com-
pliance of our unsymmetric cross-ply laminates as ply groups change,
are shown in Table 6.8.
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table 6.8

selected stiffness and compliance components T300/5208 unsymmetrical
cross-ply laminates

m Byy =—B,, a1 =0y, Bi1 =—P22 811 =28,,
kN - (GN/m)™! (MN)™? (kNm)™!

2 —85.7 12.9 17.3 38.8

4 —42.8 6.12 4.09 183

8 —21.4 541 1.81 16.2

oo 0 5.20 0 156

With these constants, it is possible to show the strain distribution in a
laminate subjected to uniaxial stress resultant or bending moment.

® ForN, #0
From Equations 6.26 and 6.65

€, = €§ +zk,

| (6.108)
= [oyy + 264, 1N,
2y o= /2 =8h, =8 X 125 X 10¢m .
6.109
= 103m ( )
Form =2
" e,/N; = (12.9 % 17.3)107 (6.110)
= 30.2, —4.4 (GN/m)™ - 6.111)
Form = oo
€, /Ny = 5.20(GN/m)™! (6.112)
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® ForM, #0
€, =By t26,,1M, ' (6.113)

Form=2
e, /M, =(17.3+38.8)10°¢ (6.114)
= 56.1, —21.5 (MN)! (6.115)

Form =
€, /M, = £15.6 (MN)! (6.116)

The strain distribution due to simple tension or bending is shown in
Figure 6.6. Under tensile load, unsymmetric cross-ply laminate will
warp. The upper half will stretch more than the lower half. The
90-degree plies are in the upper half for the m = 2 case. The particular
coupling in this laminate induces greater strains which may be undesir-
able. With the stiffness and compliance of the laminate known, a
systematic study on the effect of various lamination parameters
becomes possible. With the exception of the 6 X 6 matrix inversion,
general laminates are as simple as symmetric laminates.

z
) m(Ply Groups) ﬁ m(Ply Groups)
@4 2 @ 4 2
/mm | /mm F —
| 1 A i oy 2‘0 / 4|0 1 i —
-/10 20 - .
S i6n/m)™! / <ty
i N [ /
=/mm / -~ /mm
(a) (o)

Figure 6.6 Strain distribution of unsymmetric cross-ply laminates. As number
of ply groups varies from 2 to infinity, the strain changes. Figure on the left
is uniaxial tension; on the right, simple bending. The material is T300/5208.
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In conclusion, unsymmetric cross-ply laminates are different from
symmetric laminates because of two nonzero components of the
coupling moduli. Their values, as shown in Equation 6.93, 6.96 et al.,
and in Figure 6.5 are:

2
Bii =By =0 =0y, = (6.117)
2
N (6.118)
m N
where
h = total laminate thickness
m = number of ply groups

Uz = 31Qux — Q)]

Thus the coupling components are proportional to the difference
between the principal modulus, and inversely proportional to m. As the
number of ply groups increase, the coupling modulus vanishes. In the
limit when m becomes infinity, bendmg and stretching are uncoupled.
As shown in Figure 6.6, strain is constant in (a), and is antisymmetric
in (b). ~

A simple illustration of the coupling term of this laminate is seen by
the induced moment needed to prevent warpage. This is shown in
Figure 6.7. In this laminate the lower half is O degree; the upper half,
90 degrees; i.e., [0/90]7.

z

hez oy WoB My
lo_oooo_o > et
-h i

Figure 6.7 Stress resultant and induced moment
of an unsymmetric cross-ply laminate under
uniaxial extension. The’induced moment is in
the direction that prevents warpage.
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We have seen the range of variation of the stiffness and compliance
of an unsymmetric cross-ply laminate as functions of the number of ply
groups. The features of this class of laminates can be summarized by
the generalized stress-strain relation in Table 6.9 where matrix multipli-
cation is implied.

table 6.9
generalized stress-strain relations of unsymmetric cross-ply laminates
@ €8 € Kk Kk Kk NN N M M M
]
N 4, A, I: g, 5/0 a 9 i Ay
n, Ay Ao E &, & % T2z E ‘agz
Ns A“i € %s |
m| & A o | A 5 &
M, &, Ii Oy Dy ke Lz l: & G2
Ms i Dss ks E s

But the table above can be rearranged to show that the shear and
twisting components are uncoupled. This is shown in Table 6.10 which
is merely a repackaged arrangement of Table 6.9.

table 6.10

repackaged stress-strain relations of unsymmetric cross-ply laminates
€0 €2 k k€ ke N N, M, My N Ms
N, A4, A; 8, } e a a5, A :
0
N, Ay Ape 6,, | L) Gy Ay 4:[
M, 5, Q1 O | %, A, 8, 8,|
M, Ey2 Oy D:z' k Loz 85 & l
K2 22 92/ 922 .
______ o _ - -2 R - —
Ne | Ags 71 | %6
I
Me | Ose ke ! Ss6
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We only need to invert a 4 X 4 matrix instead of a 6 X 6. Secondly, the
shear and twisting behavior of our unsymmetric cross-ply laminate
behaves exactly like a homogeneous plate. The ply grouping and mid-
plane symmetry have no effect on the shear and twisting properties.
This fact can be.utilized in.the design of a part requiring the minimum
gage. It is not necessary to use symmetric laminates.

5. antisymmetric laminates

This class of laminates is neither symmetric nor unsymmetric. It is also
called quasi-symmetric. Instead of a symmetry with respect to the mid-
plane that ’

0(z) = 6(—2) (6.119)
we have an antisymmetry that
0(z) = —6(—z2) (6.120)

The ply orientations are odd functions with respect to the midplane. A
two-ply angle-ply laminate such as™

(—o/o] 6.121)

is antisymmetric. This class of laminates has values beyond academic
curiosity.

With antisymmetry, the following components of stiffness remain
symmetric or even;

0::(2)=0,(—2)

022(2) = Q,,(—2)
‘ (6.122)
Q,2(2)= Q,,(—2) '

Q66(2) = Qg6(—2)

The shear or normal coupling components, however, are antisymmetric
or odd; '

Qi16(2)=—Q,6(—2)
(6.123)
Q26(2) = —Q26(—2)
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The weighting factors for the integration of Equation 6.68 are anti-
symmetric or odd for the coupling modulus; and symmetric or even, for
the flexural as well as the in-plane modulus. These factors are shown in
Figure 6.3 and Table 6.6. Because of the interaction between odd and
even functions, the following components of modulus will vanish for
antisymmetric laminates:

B,, =By, =B,; =Bgeg =0 (6.124)

D¢ =Dy =A = Az =0 (6.125)

We will now examine a special antisymmetric laminéte made of
T300/5208 material with the following stacking sequence for m = 2, 4,

8, and 16, respectively.

(—458/458 1 1, [—454/454) 27, [—45,/45;,) 47, [—45/45] g7

(6.126)
These laminates are shown in Figure 6.8.
T 45
45 i =49
-45 42
45 -45
45 £
-45 e
~-45 49
d - - B ) - T4z -
45 i =X
' -45 £
-45 75 =4,
95
-45 =42
45
_JL : 45 47
m=2 m=4 m=8 m=/6
(a) » (b) (c) (d)
Figure 6.8 Special antisymmetric laminates with different number of ply
groups.

For ply orientation of *45 degrees, the coupling terms of a unidirec-
tional composite are:

016 =Cr6 =220, (6.127)

(Qxx —Oyy] (6.128)
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From Equation 6.69 and Table 6.6 we have for m = 2: ‘

_ 1076

[ % 85.7 (6.129)
16 = D26 = > O . .
= 42.8 kN (6.130)
As m = 4, we can readily show that
B¢ =By = 21.4KkN (6.131)
Thus a general relation that
h2
Bl6 :326 =_U2 (6.132)
m

seems to be valid.

The flexural modulus for this laminate is orthotropic because the
shear coupling terms are cancelled. The remaining components will
behave like those of a pseudo-homogeneous laminate, for which the
following relation applies:

h3
Dy =E Qi : (6.133)

Using the unidirectional stiffness for 6 = 45 degrees from Chapter 3
(Table 3.5).

0,1 =022 = 56.6 GPa
012 = 4232 GPa (6.134)

Qss = 46.59 GPa

The shear and normal coupling. terms of this modulus are not needed.

For our 16-ply laminate

R _ (16 X 125 X 107¢)*

=666 X 107! 2m3 :
> = X 107'2m (6.135)
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Combining the equations above,

Dy, =D,, =566 X 666 = 37.7 Nm (6.136)
Dy, = 4232 X 666 = 28.2 Nm (6.137)
Dg¢ = 46.59 X 666 = 31.0 Nm (6.138)

The flexural modulus for this laminate, like that for the unsymmetric
cross-ply, will be unaffected by the number of ply groups. In fact, they
are the same as those for symmetric laminates, in Equation 5.114 with-
out the shear coupling terms. This laminate is pseudo-homogeneous.
The resulting stiffness and compliance of an antisymmetric laminate
is shown in Table 6.11. Before we invert the 6 X 6 matrix to determine
the compliance, we can save ourselves much work if we repackage the
modulus matrix in Table 6.11 into two 3 X 3 matrices which we can
invert by hand if necessary. This rearrangement was done for the cross-
ply laminate in Table 6.10. For the antisymmetric case, the repackaged
matrices are shown in Table 6.12. In addition to the simplification in
matrix algebra, the couplings in antisymmetric laminates are very
specific and special. It is a-challenge to the designer to capitalize on the
special quality and opportunity provided by antisymmetric laminates.

table 6.11 ' )
stiffness and compliance of an antisymmetric laminate
€ € & k k ks N N N M M Ms
|
N, 4, A, E 8 74 a, 9 : B
l P a, : L,
/VZ AZ/ A& i Bx 2 2/ 22 ;
Ne Ass'| By B2 € %ss | By 5z
————————— e ———— ———— e ——— —
M BIG ! 0, D/z */ "96”' é;/ 3/2
' [
! L s O
M, stl G 2 ke e 22
|
My | B G Dss b | Be Bs | &
] '
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table 6.12 .

repackaged stiffness and compliance of the same antisymmetric laminate in
Table 6.11

€2 &l kg K K, & N, Ny Mg M, My Ng
[]
! 0
) Ay Az G € ay 2, b |
! I
)
2 Az Azz Brs | €2 Ty 2 Bos !
! !
Ms Bgs Bs2 Uss ks Bs Bos %e |
_____________________ o ——————
M, 10, D b 4 1% S By
|
‘ B
M, : Oz Dz & k2 :é‘e/ 5}2 62
! o
Ns " 8y Bsz Ass s ‘l"%/ Bs2 %s

Numerical data of [—45/45]r laminates of T300/5208 are shown in
Figure 6.9. The modulus is for all values of m, the number of ply
groups. This correction factor appears in the denominator of the

coupling components only. The compliance shown in Figure 6.9 is for
the case of m=2 only.

e? & N M
' 0o m_ v/
Mol M ol Bl iy i
C T 17T
il v m 4 N_ ! Nm
€ € € K k ks N, N Ng M, My Ms
1 I
N | 1z 8 ! 83z e | 237-111 | -173
| . |
Ny 8¢ 15 | 857 & |- B7 ~17.3
Ne 93827 857 € 267\-173-173
————————— '—————————— —_——_———1————_————
¥4 » A ~i7.3\71.1-334
M, Q,%—}'aﬂza.z / |
M 837262377 ks ~17.3-334 711
! |
85.7 857 ! - - | 80.0
Mg - : J31.0 ke 7.3 -I7.3 :

Figure 6.9 Stiffness and compliance of T300/5208 antisymmetric laminates
[—45/45]. The modulus is for all values of m, the compliance, for m = 2 only.
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Similar to the comments made to the unsymmetric cross-ply lam-
inate, we can compare the A in Figure 6.9 with the symmetric angle-ply
in Table 4.9. Since the 16-ply thickness is 2 X 1073m, the comparable
components are identical; i.e.,

Ay =56.6 X2X 1073 =113 MN/m (6.139)

Again, compare the D in Figure 6.9 with that for the symmetric angle-
ply laminate in Equation 5.114, we have identical components if we use
the case m = infinity; i.e., the quasi-homogeneous, square symmetric
laminate. The relation of Equation 6.106 is valid. So this antisymmetric
laminate is pseudo-homogeneous. We can see that the compliance of
this laminate is also pseudo-homogeneous.

As the number of ply groups increase, the compliance components
will tend toward the value for quasi-homogeneous laminate, like the
symmetric angle-ply. For comparison between the antisymmetric and
symmetric angle-ply laminates, we show the change in the compliance
components as functions of m in Table 6.13. The compliance for
symmetric laminates is taken from Equation 5.115 et al.

table 6.13

selected compliance components of T300/5208 symmetric and antisymmetric
angle-ply laminates '

m' - dyy =dy, des dig =dag 11 =2 PBi1g =P26 O11=022

(kNm)™?  (kNm)™! (kNm)! (GN/m)?!  (MN)! (kNm)™

2% - - - 23.71 —17.33 71.13
4 66.03 58.35 —18.95 20.40 — 4.09 61.21
8 60.83 36.25 — 5.88 20.05 - 1.81 60.17
16 60.09 33.12 — 2.68 19.98 — 0.87 59.95
oo 59.85 32.19 0 19.95 0 59.85

*The m = 2 case is not possible for the symmetric angle-ply laminate.

Only the 16 and 26 components reduce rapidly as m increases, all
other compliance components vary only modestly. With these com-
pliance components, we can determine the strain distribution of an
antisymmetric laminate subjected to a simple stress resultant or
moment.

properties of general laminates 255

e N, #0
€ = a; N,
€ = oy N, (6.140)
ke = BNy

o M; #0
€ = PBieMs
€ = PBreMs (6.141)
ke = 866Ms

Because of the special coupling of this laminate, the same strains (in-
plane and curvature components) are induced by totally different
applied stresses.

An opportunity for reducing or eliminating twisting curvature is
possible when both stress resultant and twisting movement are present.
This can occur in a rotor or a fan blade when centrifugal stress and
aerodynamic twisting occur simultaneous. The conditions for zero
twisting curvature is:

ke = BieNi +856Mg =0

6.142
N 8 (6.142)

Mg Bis

The compliance components in Equation 6.142 can be manipulated
within certain limits set by the properties of the constituent ply or plies
in the case of hybrids. Since the sign of the coupling compliance is
controllable, while the flexural compliance is not, the curvature in’
Equation '6.142 is controllable. The case of zero curvature is one special
case. This is a unique characteristic of composite materials. It is also
important to realize that it is the ratio, not the absolute values, that
can eliminate the curvature.



256 introduction to composite materials

e M, #0
ky = 6,.1M,
ky = 6, M, (6.143)
€ = Be 1M,

® N, #0
ky = B61Ns
kz = 662N6 (6.144)
€ = 66Ns

Again, an opportunity existing for reduction or elimination of in-
plane shear strain is possible, such that

€ = ageNe +B61M; =0

(6.145)
Ne_ _Pss

M, Gge

All these highly coupled relations for antisymmetric laminates offer
unique opportunities in the design of laminates. Under combined
stresses, certain mode of deformation can be reduced or controlled.
Strain distribution can also be altered for more favorable conditions.
Composite materials are more than a highly competitive replacement of
conventional materials. Composite materials can perform functions not
possible with conventional materials. The opportunities available for
new functions abound and need to be fully exploited. ’

6. the parallel axis theorem

Up to this point, the midplane of a laminate is the z = O plane. The
parallel axis theorem deals with the general case where the midplane of
a laminate or a ply is not on the z = 0 plane. This theorem is analogous
to that for the moment of inertia of a rigid body.
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In Figure 6.10 we show the relation between the laminate with
respect to the z = 0 plane. The relation between z and 2’ is:

z =z'—d, or ‘
(6.146)
' =z+d
‘z,z’
z=hs2 - z2'=d+h/2
.. 0 —E‘
z2==h/2 |- 2'=d=-h/2
ad

2'=0

Figure 6.10 Relation between laminate
midplane and the transferred plane.

The stress resultant and moments in the new, transferred plane can

bg: defined:
. d+h/[2 ,
N, = f o, dz'
d—h/2

hl2
= f 0,dz , (6.147)

—h2
. =_N;

- e e e e

From Equation 6.146 we can say

dz' =dz

‘when

Zz' =dth/2 (6.148)
z=1=h/2
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d+h/2
M = f o' 2'dz’ (6.149)
! d—h/2
hl2
=f 0;(z+d)dz
—h/2
= f o,2dz +d f 0,dz
= M, +dn, (6.150)

Note that the moment must be corrected by the transfer distance d. We
can now derive the transfer of stress-strain relation of a general
laminate.

d+h|2
N! =f o', dz’ (6.151)
! d—h(2
d+h/[2 ,
= f Qi€ + 2'kj)dz’
d—h|(2
h/2 , h/2
= f 0, dz| €'+ f 0,z +d)dz |k (6.152)
—h/2 ! —h/2
N; = Aije]?'+[B,-i+dA,-,~]k,'~ (6.153)
Similarly
) d+h|[2
M = f o 2'dz’ (6.154)
d—h/2
d+h/2 ! 1yt ! ’ :
=f Qi (%" + z'k})z'dz (continued)
. d—h/2 !
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hi2 , 2
[f Q;i(z + d)dz] € + [/ Q;(z + d)2dz] k}-
—h/2 / —h/2 ‘

il

' (concluded)
Therefore
Ajj = Ay

This is the parallel axis theorem. The stiffness of a general laminate can be
transferred by a distance d along the z-axis.

First, the theorem can be used to generate the stiffness of general
laminates. This approach is particularly suited for odd number of plies.
Let the in-plane and flexural modulus of each ply or ply group be the
basic building block. The coupling modulus is zero for homogeneous
ply. The transfer distance d will be the location of the midplane of each
ply.

p
Ay = Z AP
b=—p
o .
Bj; = dbAf.]’?) (6.157)
b=—p .
p
o b 3
Dj; = Df.,.) + dgAl(,].b)
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where p = %(n—l)
n = odd
= total number of plies
b = the ordinal number of plies, —p <b <p

If all plies in a laminate have the same ply thickness, the transfer
distance can be replaced by the ordinal number of the plies. Let

b= dyln,
P
B, = h l\: bA®)
e, T (6.158)
P P
" = ) )
D;; Z DE) + i z b2A¢
b=—p b=-—p

We can modify Figure 6.2 to show the new ordinal number b in Figure
6.11. The formulation by the parallel axis theorem is best suited for
odd number of plies. In Figure 6.11 the ordinal number ¢ is for even
number of plies; that for b, odd number. With the new ordinal number
we can establish a table analogous to that for the old ordinal number ¢
in Tables 5.4 and 6.6. The result of the new ordinal number for odd
number of plies is shown in Table 6.14.

f.-_..”_. —_ _
T Lnzzrmasove | | 2 = [a-172-th sbove |- o= 25" =»
: . e .
" : pez 2nd abo — p=2
| 2nd above r=/ ve
MID /st above 120 /st abo.ve - b: é
PLANE Ist below g O-th or Mid Ply _|-60 —
2nd below E Ist below —b==/
: . 12 2nd below —b==2
oz sen ] F ) n=t
-+ I o elow l 4 N I n=1/2~th below ]-b:—T ==p
e

Even Plies

Odd Plies

Figure 6.11 Ordinal numbers for laminates with even number of plies on the left;
odd number, on the right.
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table 6.14
numerical values of b’s for calculation of stiffness of general laminates
Ply order b =b b? =b?
8th above 8 36 64 204
7th above 7 28 49 - 140
6th above 6 21 36 91
Sth above 5 15 25 55
4th above 4 10 16 © 30
3rd above 3 6 9 14
2nd above 2 3 4 5
. Ist above 1 1 1 1 .
“l“d' Oth or mid ply 0 0 0 0 “;;ﬁe
plane Ist below -1 -1 1 1 P
2nd below -2 -3 4 5
3rd below =3 — 6 9 14
4th below —4 —10 16 30
5th below ) —15 25 55
6th below —-5 —21 36 91
7th below -7 —28 49 140
“8thbelow ~— 8 =36 - 64 — 204

We will now show how general laminates with odd plies can be
calculated. For each ply we have

A= hoQy

By =0 | (6.159)
h3 '

D; = 1’% Qyj

The stiffness of a general laminate with the same ply material and ply
thickness is merely the sum of the contribution of each ply using the
parallel axis theorem. We have
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» { Let - us first compute a one-ply laminate using Equations

4 = Z 4) 6.150—6.157. First, from Table 6.14 for O-th ply,
ij ij .
b=—p b =0
: !
» We have
- ) . :
ho Z Qi (6.160) j : Ay = hoQy;
b=—p
By =0
P "
o= (&) ' IR S ., h3
Bj; = Z Bij . - , | D= 359
b=—p ‘ ’
Now if we have a three-ply laminate (b =—1,0,1) of T300/5208 with
! a stacking sequence of [0/90/0] -, we have from Table 6.14,
= h, Z b4 :
Ay =h, (0 + 0, + Q4] =46.73 MN/m
p " | Bis = ho[T0ux + 0% 0] =0 (6.163)
S Z b2 (6.161) | 73
b==p Dy, = 1—‘2’- [13Q,, +Q,, +130,,1 =771 X 10°Nm
, where the coefficient 13 comes from [1+126%] for b = %1.
D — D) If we have a 24-ply laminate with the same stacking sequence; i.e.,
ij = ij ! :
Ny [05/905 /051 7
B3 g we can ifnmediately compute the stiffness by the equivalent thickness
= 0 Z QE,’?) + h2 sz Q(I.ll.’) of 8k, and apply the appropriate scaling to the values in Equation
12 ! : : 6.163, we will have:
P Ay, = 8(46.73) =373.8 MN/m
h3
- _9° 2710(®)
- = Z [1+1262] Q¢ (6.162) B =0 6.164)
b=— '

', = 83(771 X 1073) = 394.7 Nm
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If the ply materials are different from ply to ply, due to either ply
orientations or usc of multiple materials (hybrids), the proper modulus
should be substituted into Equation 6.158 for each modulus designated
by superscript b.

The use of the parallex axis theorem for the calculation of the stiffness of a
general laminate is convenient when:

® There are odd number of plies,
e All plies have the same thickness, and
® Plies can be of different materials (hybrids).

If any one condition is not satisfied, the simple factors in Table 6.14
cannot be used without modifications. ‘

The parallel axis theorem is also useful in determining the relatlve
importance of stacking sequence in a laminate in a built-up structure,
such as the cap or flange of a “T” section or the skin of a fuselage
Repeating Equation 6.156 here:

Ay = Ay

'

By + dA;; (6.165)

If we introduce the following stiffness components:

A= Ayln
B = 2B;/n? (6.166)
D} = 12D;/n?

All the normalized components of stiffness will have the same physical
unit as the stiffness of a homogeneous material; i.e., Pa. The parallel
axis theorem in Equation 6.165 can be expressed in terms of the
normalized components.
Ay =4
* d

B’ =Bj+24};=
h (6.167)

Y

2
Dy =D} +lZB*-—+12A [Z]
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Let us examine a cross-ply laminate of T300/5208, in Figure 5.11.

- [04/904]) 5, vy =vso =%—
From Table 4.6, and Equation 4.48:

AY, =A,,/h=U, +Us =76.37+ 19.71

(6.168)
= 96.08 GPa
From Table 5.7, and Equation 5.64 for m = 4
DY, =U, +3U, +U
11 1T Y2 3
(6.169)
= 160.37 GPa
Because of symmetry
B* =0 ' (6.170)

Substituting these values into Equation 6.167 for the normalized flex-
ural modulus, we have

d 2
160 + 12 X 96 "

2
160 + 1152 [‘—Z]

Note the numerical values as a function of the normalized transfer
distance. We have seen here that the sensitivity of the transfer distance
to the flexural modulus. If the number of ply groups change, as we have
seen in Equation 5.66 et al., only the first term of Equation 6.171 is
affected. So the effect of ply groups or stacking sequence in general will
be negligible when the transfer distance is increased beyond the laminate
thickness. Similar effect of a sandwich core can be expected. The
second term in Equation 6.171 becomes dominant. It determines the

DY,
(6.171)
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table 6.15
normalized flexural modulus as function of transfer
distance for T300/5208 cross-ply laminates

DY}
..q_ d 2
h DYy 1247, [—]
h
0 160 00
0.1 171 14.88
1 1,312 1.138
10 115,360 1.001,38
100 11,520,160 1.000,013,8

stiffness of a thin shell. The first term is still important because it
controls the local stability of the shell. Results are listed in Table 6.15.

Now let us apply the example above to an unsymmetric construction
such as the cross-ply laminate in Equation 6.90 and Figure 6.4(a). The
stiffness of this laminate is shown in Figure 6.5. We can compute the
following normalized components where the 16-ply laminate with a
thickness of 2 mm:

AT, = 192/2 X 107® =96 GPa
" 171 2 _
- @ s =— =2
BY, m AX 109y 3 GCraform (6.172)
12
DY, = 64 ———=—— =96 GPa
H (2 X 1073)3
Substituting these values into Equation 6.166, we have
A}, = 96 GPa
kr d
Bt: -—43+1925 (6.173)

d, = d?
96 — 513 -+ 1152[-—]
h h

L 3
Dll
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When the transfer distance is ten times the laminate thickness, the
coupling and flexural modulus components in the 1-direction become
insensitive (within § percent variation) to the stacking sequence. For
thin shells, where radius is at least ten times the thickness, the stacking
sequence, sandwich core and midplane symmetry contribute to the
local behavior of the shell only. They have little effect on the gross
behavior of the shell.

The numerical results in Table 6.16 are plotted in Figure 6.12, where
we show the normalized flexural modulus as a function of the normal-
ized transfer distance. Both the symmetric and unsymmetric cross-ply
laminates are shown. As the transfer distance increases beyond ten, the
two curves merge into one; i.e., the last term in Equations 6.171 and
6.173 become dominant.

table 6.16
the normalized flexural modulus for unsymmetric laminates as functions of
transfer distance

*r */
Bll Dll

d
h BY, : 192% D} (Unsymm) 1 lSlE-] ?
0.1 —238 —1.239 56.22 4.880
1 149 776 753 638
10 1877 977 110,166 9563
100 19157 9977 11,468,796 9955

The unsymmetric laminate curve falls below that of the symmetric
laminate. Thus asymmetry reduces the flexural modulus. From Equa-
tion 6.167, we can derive the condition for eliminating the coupling
matrix by proper transfer of the axis.

BY =O=B}'}+2A}'}%

(6.174)
d _  Bh
n 247
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Substituting this into the flexural modulus,

(B 12

D' =D} -3

*

11

or substituting Equation 6.166 into this,

D,f, Pa

/0 | I
) d

h

Figure 6.12 Normalized flexural modulus as a function of
normalized transfer distance.

100

(6.175)

(6.176)
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Note that the transferred stiffness is always less than the original. This
equation only applies to one component at a time. For example, we
have cylindrical bending along the 2-axis, instead of the 1-axis,

B3,
D2'2 = D22 = —— (6-177)
Ay
Using the data in Equation 6.173,
d 43
— =—=.223 6.178)
h 192 (

DY} = 38.89 GPa or
h'3 (6.179)
1 = 38.89 = 25.92 Nm

This is lower than original untransferred modulus of 37.7 Nm shown in
Equation 6.136. In fact, at this transfer distance, the flexural modulus
reaches a minimum. This is shown in Figure 6.12. Also at this transfer
distance, the laminate behaves like a symmetric laminate with a reduced
flexural modulus. - The buckling equation for isotropic material can be
directly applied for this unsymmetric laminate under cylindrical
bending.

We have seen the use of the parallel axis theorem for a variety of
problems. The theorem is helpful in separating the local from the global
behavior of a built-up structure. It is also helpful in identifying the
effects of stacking sequence, the midplane symmetry, and the contribu-
tion of a sandwich core. The theorem illustrates the difference between
the absolute or unnormalized modulus and the normalized modulus. In
the design and sizing of structures, the laminate modulus as a function
of the number of plies, ply orientations, and transfer distance must be
optimally selected. The absolute modulus is preferred. The parallel axis
theorem is easy to use if plies are added to an existing laminate without
performing the integration or summation from the bottom to the top
plies. The marginal return of an additional ply can be quickly
established.
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7. transformation of the coupling stiffness and compliance

It is useful to establish the transformation of the coupling stiffness and
compliance matrix. With such relations we can show the unsymmetric
cross-ply laminate and the +45 degrees antisymmetric laminate are
rclated to each other through a rotation of 45 degrees. With the trans-
formation relations we can calculate the stiffness and compliance of
our unsymmetric laminate for any angle of rigid body rotation. For our
cross-ply laminates listed in Table 6.5, we have for [0/90] ; the follow-
ing components:

Blll = —8’22 = —85.7 kN
(6.180)

B, =B'66 = B =B,26 =0

From the transformation equation in Table A.7, we can immediately
write down the transformed coupling modulus for [6/90—0]; as
follows:

B,y = —B,, =(m*—n*)B}, = B}, c0s28 = —85.7c0s20

Biz = Bse =0 (6.181)

Bis = Bye= %B', 5in20 = —42.85in26

The transformation of the coupling modulus is very simple and
follows the trigonometric functions of the double angle. When 6 equals
O degree, the 16 and 26 components are zero. When 6 equals —45
degrees, the 11 and 22 components are zero while the 16 and 26 reach
maximum. Components related to the 12 and 66 components are
identically zero for all angles. The nonzero transformed - coupling
modulus are shown in Figure 6.13.

From Table A.7 we can write the transformation equation for the
antisymmetric laminate [—45/45] will have the following components
for the coupling modulus based on m=2 in Figure 6.9:

Bl =By = +42.8 kN

(6.182)

B'n’ =B'22 =B}, =B:ss =0
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From this laminate orientation, the coupling modulus of a laminate
[6—45/6+45] 7 can be obtained from the following nonzero
components:

Bl 1 = —322 = —4(m3n+mn3)B,16
= —2B ¢sin20 = —85.7sin26 (6.183)

Bis =By = (m*—n*)B), = 42.8c0s20

The result of this transformation is identical to that shown in Figure
6.13 except the origin for our laminate should be displaced to the left
by 45 degrees. The transformation relation of this equation is more
useful than that in Equation 6.181 because the starting point is from the
symmetry axis of the antisymmetric laminates. The matrix inversion
can be reduced from one 6 X 6 to two 3 X 3. Thus we can use the
transformation equation to generate the modulus and compliance of a
cross-ply laminate in Figure 6.5 by rotating the results of an anti-
symmetric laminate in Figure 6.9.

We need equations comparable to that of 6.183 for our coupling
compliance matrix 8. This can be derived from Table A.10 because £ is

symmetric for the case of a bidirectional laminate. The result is:

Bise = PBr¢ =—17.3 (MN)!

Bii = —Poy =—20m3n—mn3)B} s

—B ¢sin26 = 17.3sin26
, (6.184)
Bie = Bae =(m*—n*)Bis

= P1ec0s20 = —17.3co0s20
Biz = Pes =0

From the transformation relations above, we can see that a rotation of
+45 degrees will result in the laminate [0/90] ; for which the nonzero

components are:

Bur = s = 173 N s
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This agrees with the result in Figure 6.5 for the unsymmetric cross-ply.

We have thus established an expedient method of generating the
stiffness and compliance of antisymmetric laminates with arbitrary
laminates orientations. The entire antisymmetric laminate can undergo
arbitrary rigid body rotation. The process described above requires the
inversion of two 3 X 3 instead of one 6 X 6 matrix provided § is
symmetric.

4 5,0R By, #N § B, B, 1V
80 90 Tao -
2mm
o 1l
40 40}
i B2z
! I o L 1 ] l l/>
Jo 60 90 & -60 -30 30 60 90 g
&y
-40}| -40}
-80k -go}

[0790] [45/-45][9070] [-45/45] [079Q] [45/-45/[90/0]

Figure 6.13 Transformation of the coupling modulus of a T300/5208
cross-ply laminate: [0g/90s] 7.

8. conclusions

Index notation is almost a prerequisite in the study of general lam-
inates. A highly coupled behavior is available and provides opportuni-
ties for design and fabrication not possible with the conventional mate-
rial. The governing stress-strain relations are as conceptually simple as
the symmetric laminates. The stiffness of a general laminate can be
easily manipulated to provide any degree of in-plane versus flexural
coupling. In many cases, only the coupling matrix B is sensitive to the
asymmetry of stacking sequence. Every component of the compliance,
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on the other hand, is sensitive to the asymmetric stacking sequence of
the laminate. '

The parallel axis theorem is a useful tool for calculating the modulus
of any laminate. Constructions of hybrid, built-up structures can be
readily expressed in terms of its modulus. The sensitivity of stacking
sequence, asymmetry, transfer distances and changes of materials or
finite widths can all be assessed in a straight-forward manner.

A structure such as a wing can have symmetric but different lam-
inates of the top and bottom covers. The wing will be asymmetric. With
a properly chosen transfer distance like that is in Equation 6.174, the
wing will bend like a simple beam with a reduced flexural stiffness.
Numerous combinations of symmetric and asymmetric constructions,
including hybrids, can be utilized to create novel responses of built-up
structures. The local versus global stiffness is easy to differentiate. The
use of prestress can shift failure modes to more advantageous combina-
tions and locations. The essence of composite materials lies in the
judicious choice of:

® Ply materials (Q,(c’}, ..
® ].ocal property (A4, By;, Dyj)

® Global or structural property (4/;, By}, Dy;)

In addition, the process of curing and environmental effects (to be
presented in Chapter 8) can be chosen to provide the most desirable
prestress. We should not penalize composite materials by eliminating
anisotropy and asymmetry. We should instead improve our analytical
capability so we can do justice to the effective use of composite

materials. We should not limit ourselves to ten constants and make the

remaining 26 zero. We should try to take advantage of all 36 constants.
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. homework problems

. Discuss the pros and cons of calculating the modulus of general

laminates of the following approaches:

(1) Direct integration of Equation 6.68 or summation of Equation
6.69.

(2) Separation of geometric factors from material constants in Equa-
tion 6.79 et al.

(3) The parallel axis theorem in Section 6.

. What is the consequence of not having the minus sign in the defini-

tion of curvature in Equation 5.9 on the modulus of a general

laminate? What is the consequence if the factor of 2 for the twisting

curvature is left out in Equation 5.9?

. Calculate the components in Table 6.4 which is a partial inversion of

the modulus of Table 6.3 for T300/5208 cross-ply laminates shown
in Figure 6.4. Is the stiffness matrix symmetric, asymmetric or anti-
symmetric?

. What is the stiffness of a circular cylinder with unsymmetric cross-
ply wall of the last problem subjected to uniaxial extension along its
axis? How does it compare with a symmetric laminate of the same
total thickness? Compare the ply stress in the cylindrical wall of the
symmetric and unsymmetric construction.

. Calculate the partially inverted modulus in Table 6.4 for a
T300/5208 antisymmetric laminate shown in Figure 6.8. The result
can be applied to a thin wall tube under an applied torque. What is
the resulting ply stress and strain? How do they compare with those
for a symmetric laminate of the same wall thickness?
" Calculate unsymmetric +30-degree angle-ply laminates of T300/5208
for various ply groups similar to those in Figure 6.8. How can we
write down the results for the same laminates for +60-degree? .
. Write a general relation for the stiffness of a built-up structure with
piece-wise variable widths. How can hybrid (variable materials) be
introduced? »
. How are engineering constants defined for general laminates? Show
the bending and torsional stiffness of T300/5208 +45-degree anti-
symmetric laminates as functions of ply groups. Compare the results
with the symmetric laminates in Figure 5.17.

. General laminates offer the widest choice of coupling between
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various behavioral variables. Centrifugal force (in-plane stress re-
sultant), for example, can be used to reduce or eliminate the twisting
curvature shown in Equation 6.142. Centrifugal force can also be
used to reduce or eliminate bending curvature; see Table 6.9. What
are the conditions for eliminating bending and twisting curvature
simultaneously by centrifugal force? Can T300/5208 satisfy the
conditions?
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nomenclature

A,-,-,B,-,-,D,-; = Stiffness of symmetric or unsymmetric laminates; units vary

A}, BY. DY = Normalized stiffness; Pa

a;; = In-plane compliance of a symmetric laminate, in N!;jj =
1,2,6

Width of a beam or

= The ordinal number of plies in a laminate with odd plies

d = Flexural compliance of a symmetric laminate

d = Transfer distance from the reference axis in the parallel
axis theorem

S
I

h = Total thickness of laminate, in m

h, = Unit ply thickness, in m

k; = Curvature, inm™;i=1,2,6 : _— -
M, = Moment, in Nm™;i=1,2,6

m = Total number of ply groups

n = Total number of plies in a laminate

N; . = Stress resultant, in Nm™!;i =1,2,6 :

0y = Stiffness of a unidirectional composite; i,j = 1,2,6 or x,y,s
! = The ordinal number of plies in a laminate with even plies

Via B,p = Geometric factors for the in-plane, coupling and flexural
moduli of an unsymmetric laminate;i = 1 to 4 ‘
= Linear combinations of the stiffness of a unidirectional
composite;i=1to 5
@;,B;5,6; = Compliance of unsymmetric laminates; units vary
@;,67,8%; = Normalized compliance; Pa~!
g; = Stress components in a lamina

1
€;,€7 = Total and in-plane strain in a laminated composite

U.

1

chapter 7
strength of composite materials

The strength of unidirectional-and multidirectional composites can- be
described by quadratic interaction failure criteria in stress and strain
space. The first ply failure envelope in stress space can determine the
optimum strength. This envelope in strain space can be approximated
by a right ellipsoid in the p-g-r strain space. This envelope becomes
independent of ply orientations. The design of composite laminates
becomes analogous to that for conventional materials.

277
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1. failure criteria

For the determination of strength of any material it is the usual prac-
tice to estimate the stress at the time and location when failure occurs.
In the case of conventional materials’ we need only to determine the
maximum tensile, compressive, or shear stress and can then make some
observation about the failure and the failure mechanism. This process-is
relatively straightforward because isotropic materials have no preferen-
tial orientation and usually one strength constant will suffice. The iso-
tropic material is essentially a one-dimensional or one-constant
material. The Young’s modulus for stiffness will suffice because
Poisson’s ratio is taken to be about 0.3, and the uniaxial tensile strength
will also suffice because the shear strength is taken to be about 50 to 60
percent of the tensile.

" For composite materials, however, the one-constant approach for
stiffness or for strength is no longer adequate. We saw earlier that four
elastic constants were needed for the stiffness. We will see later in this
chapter six constants for the strength of unidirectional composites are
needed. The number of constants however do not introduce conceptual
difficulty. We know that unidirectional composites have highly direc-
tionally dependent strengths. The longitudinal strength can be twenty
times that of the transverse and shear strengths. So for any state of
applied stress, all three stress components must be examined before a
judgment on the cause of failure can be made. We cannot say quickly
the specific stress component that is responsible for the failure. Prob-
ably all three components are responsible. The effect of combined
stresses must be systematically determined and can be regarded as a
way of life for composites.

The determination of strength using failure criteria is based on the
assumption that the material is homogeneous (properties do not vary
from point to point) and its strength can be experimentally measured
with simple tests. Failure criteria provide the analytic relation for the
strength under combined stresses. There is another approach of strength
using fracture mechanics. A material is assumed to contain flaws. The
dominant flaw based on its size, shape and location determines the
strength when its growth cannot be stopped. In this chapter we will
interpret strength using failure criteria.

For composite materials, we need a failure criterion for the unidirec-
tional plies. The strength of a laminated composite will be based on the
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strength of the individual plies within a laminate. We would expect
successive ply failures as the applied load to a laminate increases. We
will have the first ply failure (FPF) to be followed by other ply failures
until the last ply failure which would be the ultimate failure of the
laminate. The ply stress and ply strain calculations for symmetric and
general laminates are intended for strength determination. This is the
subject of this chapter. S

There are two popular approaches for failure criteria of unidirec-
tional composites. They are all based on the on-axis stress or strain as
the basic variable with different tensile and compressive strengths.

a. the maximum stress and strain criteria

g, S XorX’

o, < YorY'’ (7:1)

Failure occurs when one of the equalities is met. Using the linear
relation we can express the equatlon above in the following max-
imum strain criterion:

S 4 Y'
€ < — or — (7.2)
E, E,
e* < i
§ Es

Failure occurs when one of the equalities is met. These two cri-
teria are not the same. One of the homework problems in Chapter
1 showed the difference. Only when Poisson’s ratio of the uni-
directional material is zero, the criteria become identical. Con-
ceptually they are similar. Each component of stress or strain has
its own criterion and is not affected by the other components.
There is no interaction.
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b. the quadratic interaction criterion

F,-,-O,-U]- + F,-U,- =1 (7.3)
This can be expressed in strain components.

Gijeiej' + Giei =1 (7.4)

where the F’s and G’s are strength parameters analogous to the
constants in Equations 7.1 and 7.2. Failure occurs when either
equation is met.

We will choose the quadratic criterion in this book. It is simple,
versatile and analytic. Established rules on transformation, invariance
and symmetry are applicable. It includesinteraction among the stress or
strain components analogous to the von Mises criterion for isotropic
materials. Many have used variations of this failure criterion.

Failure criteria serve important functions in the design and sizing of
composite laminates. They should provide a convenient framework or
model for mathematical operations. The framework should remain the
same for different definitions of failures, such as the ultimate strength,
the proportional limit, yielding, endurance limit, or a working stress
based on design or reliability considerations. The criteria are not in-
tended to explain the mechanisms of failure. Failures in composite
materials involve many modes; viz., fiber failures, matrix failures, inter-
facial failures, delamination, and buckling. Furthermore, the various
modes interact and can occur concurrently and sequentially. Failure
analysis based on some post-mortem examination without due consider-
ation of the dynamic process of failure can be misleading.

2. quadratic failure criterion

Equation 7.3 can be expanded for the case of two-dimensional stress, or
ij=1,2,6.

Fuaf + 21?120'102 +F220§ +F66a%
+2Fl60106+2F260206 (7.5)

+ Fi0, + Fy0, + Fgo, = 1
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Since our unidirectional composite is in its orthotropic axes, as shown
in Figure 7.1, the strength should be unaffected by the direction or sign
of the shear stress component. If shear stress is reversed, the strength
should remain the same. Sign reversal for the normal stress components,
say from tensile to compressive, is expected to have a significant effect
on the strength of our composite. Thus, all terms in Equation 7.5 that
contain linear or first-degree shear stress must be deleted from the
equation. There are three such terms:

Fys0,05 F,50,05 Foog (7.6)
where i,j = x,y,s is applied to Equation 7.3.

Since the stress components are in general not zero, the only way to
ensure that the terms above vanish is for '

Fog=F,,=F, =0 (7.7)
v g ¢

Figure 7.1 On-axis positive and negative
shears. They should have no effect on
the strength of unidirectional composites.
Coupling between shear and normal com-
ponents cannot exist in this orthotropic
orientation. ‘

With the removal of the three terms, Equation 7.5 can be simplified.

2 2 2
Fyx0y + 2F 0,0, + F),,0) + Fg o

(7.8)
+ Fyo, +F,0, =1

There are four quadratic strength parameters analogous to the four
independent components. of modulus. There are two linear strength
parameters as a result of the difference in tensile and compressive
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strengths. There is no counterpart of this in the modulus because tensile
and compressive moduli are assumed to be equal.

Of the six material constants or strength parameters, five can be
measured by performing simple tests.

® Longitudinal Tensile and Compressive Tests
Let X = Longitudinal tensile strength
X' = Longitudinal compressive strength

These strengths are measured by uniaxial tests shown in Figure 7.2.
Substituting the measured strength into Equation 7.8,

Ifo, =X,
F“X2 +FX=1 (7.9)
Ifo, =—X/,
FxxX’z—FxX’= 1 (7.10)
¢<§
X
£
/
> &
-X/

Figure 7.2 Uniaxial longitudinal tensile and
compressive tests,
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We have two equations for two unknowns from which we can get

1
Fax =30
j (7.11)
11
Fx —X XI

® Transverse Tensile and Compressive Tests

Let Y = Transverse tensile étrength
Y' = Transverse compressive strength

Using the same approach as the longitudinal tests and by reason of

symmetry, we know

1
B =yv
(7.12)
11
Fo=y—y
® [ongitudinal Shear Test
Let S = Longitudinal shear strength
Substituting this value into the shear stress in Equation 7.8,
F, =1 (7.13)
5s S2 .

We have obtained five of the six coefficients in our failure criterion of
Equation 7.8. The one remaining term is related to the interaction
between the two normal stress components. The only way that this
coefficient can be measured is for both normal stress components to be
nonzero; this requires a combined stress or biaxial test. This experi-
mental task unfortunately is not as easy to perform as the simple uni-
axial or shear test. :

Although the exact value for the interaction term is indeterminate at
this' time, there are upper and lower bounds imposed on this value
based on a geometric consideration. A conic section or quadratic curves
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can go from an ellipse to parallel lines, and to hyperbola depending on
the value of the interaction term, the coefficient of the product of two
normal stress components in Equation 7.8. The criterion that dictates
which branch of the quadratic curve it belongs to is based on the value
of the following discriminant:

> 0 for ellipse
Discriminant = F, , F, , — F,?y = 0 for parallel lines  (7.14)

< 0 for hyperbola
In order to insure that the failure criterion represents a closed curve in
the plane of the normal stress components, this discriminant is con-
strained by the value shown for the ellipse in the equation above. The

curve has to be closed in order to avoid infinite strength.
If we introduce a dimensionless or normalized interaction term,

Fi, =Fy [VFLF, (7.15)

The range of values of the discriminant in Equation 7.14 can now be
expressed by the range of values of the normalized interaction term:

—1 <Fg, <1 forellipse
F;‘y = *1] for parallel lines (7.16)
F;‘y < -1 <F;‘y for hyperbola

We can rearrange Equation 7.8 in terms of the following dimension-
less parameters: ‘

V Fyx0x
vV Fy,0, : (7.17)
v FSSUS

X
y
z
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In addition, we also need the following dimensionless parameters:

e _tx _X-—X
* T Vh, VAX
(7.18)
F* = F, _Y-Y
y /——-Fyy VYY'
with these parameters, Equation 7.8 becomes:
x2 + 2F¥, xy + y2 + z2 +Fix+Fyy=1 (7.19)

This equation represents a family of ellipses. In the z = O plane the loci
for all materials- can be described by ellipses with the following
features: . :

® We can find the x-axis intercepts by letting y = 0, in Equation
7.19, we will have

x2+F¥*x—1=0

F¥ /(F;; 2
=—2: [[Z]) +1
T3 2

From Equation 7.18, we can show by direct substitution

_ /_f\i _/_Zf_' |
x = X’ X ‘ (7.20)

® Similarly, we can show the y-axis intercepts as

- | X _/Z
v=[ 3 - (7.21)

o F¥, will govern both the slenderness ratio and the inclination of
the major axis; i.e., +45 degrees for negative £y, and —45 degrees
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for positive F <y In place of the biaxial stress test to determine the
sixth strength parameter, we assume that the orthotropic failure
criterion in Equation 7.19 is a generalization of the von Mises

criterion
Fr,=—1 (7.22)
where the von Mises criterion can be expressed as follows:
x2—xy+y?=1 (7.23)

® The linear terms will determine the displacements of the center.

The stress failure criterion in Equation 7.8 for unidirectional com-
posites can be expressed in strain-space. This is often more convenient
than that in stress-space because strain distribution across the thickness
of a laminate is idealized as constant or at most a linear function of the
z-axis. Thus strain at any ply in a laminate can be readily determined
from which the failure criterion in strain-space can be applied directly.
This is the motivation for expressing the criterion in strain rather than
stress-space. Since our material is assumed to be linearly elastic
up to failure, the one-to-one correspondence between strain and stress
is always valid. For each stress there is one and only one corresponding
strain.

In order to derive. Equation 7.4 from 7.3, we need only to substitute
the stress components by strain components using the on-axis stress-
strain equation listed in Table 1.6, thus

FiiQii Qjrenes + FiQy€; =1 (7.24)
We can define
Grr = FijQi Oy

G = FiQy

(7.29)

So that the failure criterion in strain space is

ijfkei + erk =1 (7.26)
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We can expand this equation and invoke symmetry as we did in Equa-
tion 7.7, to have:

Gyx€l + 2G,, ec€, + nyej + Gy €2 + Ge, + Gyey, =1
(7.27)

where

Gyxy = Fxe?cx + 2nyQxexy +F)’)’Q32‘y
— 2 ‘ 2
Gyy = FyxQxy + 2F,, 0y, Q) +F,, 05,

ny = Fxexexy + FX}’[QXXQ}’}’ + Qiy] + Fnynyyy
(7.28)
Gss = FssQ.?s = [st/S]2

Gx = FxQ¥x +Fnyy

Gy =F.0x) +F,0Q,

This equation is already dimensionless. Such representation has many
advantages, which include the generality of the equation in all physical
dimensions. These material constants have the same values in SI and
English units.

The strength of a unidirectional composite for a given state of strain
can be obtained directly from solving the quadratic equation of Equa-
tion 7.27. As was the case of the strength in Equation 7.8, there will be
two roots: one for the given strain components; the other for the same
strain components but with the signs reversed.

3. sample strength data

We will use unidirectional_T300/5208.composite as an example for the
strength calculation. The measured strength data of this material are:

X = Longitudinal tensile = 1500 MPa_

X' = Longitudinal compressive = 1500 MPa
Y = Transverse tensile = 40 MPa (7.29)
Y’' = Transverse compressive = 246 MPa

S = Longitudinal shear = 68 MPa
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From Equations 7.11 et al., we can calculate the following:

Fy = 0.4444 (GPa)™

F,, = 101.6 (GPa)™

F,, =216.2(GPa)? (7.30)
F, = 0

F, = 20.93(GPa)’

From Equations 7.15 and 7.22

Fry =V'F, F,, Ff,

= —3.360 (GPa)™?

(7.31)

In stress-space, the allowable strength curves for each material is
anchored by four points representing the four measured strengths.
These points are the intercepts of the stress axes shown as solid dots in
Figure 7.3. It is necessary that all failure envelopes must pass through
these intercepts or focal points.

Py
— /
-4 -3 -2 -/ / 2
— L | o L } |
— _
Oy, GPa
-~/

Figure 7.3 The four intercepts of the strength curve in zero shear
stress plane for T300/5208. The assumed strength curve drawn
through these points is based on the generalized von Mises
criterion,
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An allowable strength curve is drawn through these four points with an
assumed interaction term of the generalized von Mises criterion in
Equation 7.22. Note the high degree of directionality in strength. The
curve is highly elongated. As we have seen earlier, uniaxial stress
induces biaxial strain because of the Poisson’s effect. This is shown in
Figure 1.9. The four fixed points in strain-space that correspond to the
intercepts in Figure 7.3 can be calculated from the on-axis stress-strain
relation.

® wheno, = X,

€8 = €, = X/E, =8.287X107
€F =€) T “Vx € =—2320X 107 ‘ (7.32)
® when o, = —X',

€‘X’ = Ex(a) = X,/Ex ="—8.287 X 10—3

= —v, e =2320X 1073 (7.33)

'y
ef =€ = Y/E, =3.883 X107
. €F = €pgy- = -y €, =—0.0618 X 1073 , (7.34)
® wheno, = -Y',
€ =€y = —Y/E, =—23.88 X 107
€ =€y = V€, =0.380 X 107 (7.35)

These focal points are shown in Figure 7.4.

Now we will plot the allowable strength curves in strain-space for
various values of the normalized interaction term. The family of
strength curves in strain-space is shown in Figure 7.5 using the four
focal points in Figure 7.4. The generalized von Mises criterion is equal
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é

)
»M

Figure 7.4 Four focal points of the allowable strength curve in strain-
space, with zero shear strain. The material is T300/5208.

to the curve with ny = —4. With this assumed interaction term, the
failure criteria in strain space (Equation 7.27) can be calculated with
Equation 7.28 and the modulus of the material. For T300/5208, we
have

G,, = .444 X (181.8)2 —2 X 3.36 X 181.8 X 2.89 + 101.6 X 2.89)?
(7.36)
= 12004
Similarly
G,, = 10680 Gyy = —3069 Gy, =11117
' (7.37)
G, = 60.64 G, = 216.5

X
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- T
-0,020  -0.015

Figure 7.5 Allowable strength curves in strain-space for various values of
the interaction term for T300/5208. These curves show much less direc-
tionality than comparable curves in stress-space.

Strength data for other unidirectional composites can be found in
Table 7.1. The elastic constants of the same materials are listed ‘in
Chapter 1. The strength parameters in stress and strain space can be cal-
culated following the example for T300/5208 in Equations 7.30 and
7.36. The normalized interaction term is assumed to be — Y. We call
the criterion with this value the generalized von Mises criterion. The
strength parameters for the stress and strain space representations are
listed in Tables 7.2 and 7.3, respectively. As a comparison a high
strength aluminum is listed in the same tables. The stiffness of this
metal is based on the Young’s modulus of 69 GPa and Poisson’s ratio
of 0.3, same as those shown in Equation 1.33.
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table 7.1
typical strengths of unidirectional composites in MPa
Long. Long. Trans. Trans.
tens. comp. tens. comp. Shear
Type Material Vr X X Y Y )
T300/5208 Graphite
[Epoxy 0.70 1500 1500 40 246 68
B(4)/5505 Boron
, [Epoxy 0.50 1260 2500 61 202 67
AS/3501 Graphite
/Epoxy 0.66 1447 1447 51.7 206 93
Scotchply Glass
1002 [Epoxy 0.45 1062 610 31 118 72
Kevlar 49 Aramid :
/Epoxy [Epoxy 0.60 1400 235 12 53 34
Aluminum 400 400 400 400 230
table 7.2
strength parameters in stress space for unidirectional composites* .
F,, F,, Fy, F, F, F,
Type Material (GPa)™ (GPa)™ (GPa)™2 (GPa)T’ . (GPa)™! (GPa)™
- T300/5208 Graphite !
/Epoxy 444 101.6 — 3.36, 216.2 0 20.93
B(4)/5505 Boron -
- [Epoxy 317 81.15 — 2.53 222.7 .393 11.44
AS/3501 Graphite 1
/Epoxy 476 93.48 — 3.33 115.4 0 14.50
Scotchply Glass .
1002 |Epoxy 1.543 273.3 —10.27 192.9 — .697 23.78
Kevlar 49 Aramid ’ :
[Epoxy [Epoxy 3.039 1572 —34.56 865.0 —3.541 64.46
Aluminum 6.25 — 3.125 0

*Based on generalized von Mises criterion: F;‘y =

€6C Ssieusyew ajisodwod jo y3busiis

s{ere3ew 23150dWOD 03 UONINPOIIUI 26T
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- 4. transformation equations for strength parameters
QA '3 2 DN o 0 -
= S =] % = = - - S T S T ST
N a ] = a . We have dealt with the on-axis orientation of the failure criterion. We
can establish the off-axis criterion by establishing the transformation
equations. We have the following:
3 ~ 0 e On-axis: stress, and the quadratic and linear strength parameters:
u 2 ) —_ A 0 ;
© e g & & 2 -°
T Oy, 0y, Og; Foxr By Frys Fygs Fy, F,
e Off-axis: stress, and the quadratic and linear strength parameters:
S~ -
2 - L 8 & & =
© - e A - 2 « 01,02, 065 Fri, Fazseos Fy, Fy, Fg
. We wish to express the off-axis strength in terms of the on-axis
_f_;’;’ N 2 % © ~ . - ; strength. This is precisely the same as the transformation of compliance
E | o S g = = S N in Table 3.8. ,
2 [ I | o - ' We can derive this by substituting the stress transformation equation
Q . . ey . . . . y
E into the on-axis failure criterion in Equation 7.8. The stress transforma-
3:— tion is used to replace the on-axis stress to an off-axis stress; i.e.,
" .
£ A 2 Q 5 = 2 = Table 2.1.
<] > el Ne) < 0 Ve
a |© = S = 00 ~ oy
§ —- <+ N Fy (m?o, + n?g, + 2mnog)?
] 3 - l : 2ny(m2o1 + n%g, + 2mnag) (20, + m*oy — 2mnag)
o ¥ = < 4] o e I :
£l &8 8 R 2 ¥ 2| =
5 . IR +F,,(n*0, + m*0; —2mnog)?
5 .§ :
' L .
5 g : + F,,[—mno, + mno, + (m* —n*)ag]?
o (5] £ '
E 2ie 8 £ g 2 2
S|IS|E2% c% 2% > 2 g b + F,.(m*0, + n°02 + 2mnog)
F- ~ 92 09 a9 g9 5 5 £ o
b = S S s 2F &5 E5 3 )
= /m < >
p - O O% <% <l - + F,(n?a, + m*o, —2mnog) =1 (7.38)
~ O y 1 2 6
£ =
£ 3
s & Rearranging the above, we have
™ g. 8 [Va) &
~ v | & o - = @ = 4 4 2,2 22 2
o B &le 5 3 2 I s [m Fxx+nFyy+2many+mnFN]0,
2 |[Fl8 3 2 2g %8 3
g & @ NJ %) 88 % & 3
% A < A= ME o +...+2mn(F, —F,)os =1
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Matching this with Equation 7.5, we have

Fyy =m*F, +n*F,, +2m*n*F, , + m*n?F,,

.....

F¢ =2mn(F, —

(7.39)

The quadratic strength parameter transforms exactly like the com-
pliance in Table 3.8; the linear, the same as strain in Table 2.5. The
only difference is that Table 2.5 transforms from the off-axis to the
on-axis. The transformation of F’s and those of all other material prop-
erties are from the on-axis to the off-axis. The sign of the sine functions
must change. The results are listed in Tables 7.4(a) and (b), where
matrix multiplication is implied.

table 7.4(a)

transformation of quadratic strength parameters in stress space

in power functions

Fax Fry Fry Fss
£, m? n? 2m?n? m?n?
/_-22 ”4 /'l74 2m2”2 'mzﬂz
£, mén? man? mt+pt -mZn®
Ffes |¥m?n? 4m2n? -8m?n? (m2-n2)2
Fie |2m3n =2mn’ 2(mn’-m’n) mn®-m>n
Fos |2mn® =2m’n  2(m°n-mn®) m3n-mn?
m=cosé, n=sin8
table 7.4(b)

transformation of linear strength parameters in
stress space in power functions

& 5
F,' mZ ”2
Fz ”2 mZ
Fe 2mn -2mn

m=

cos 6, n=sin8
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Similarly we can derive the same equations in terms of multiple angle
functions. These are shown in Tables 7.5(a) and (b).

table 7.5(a) ,
transformation of quadratic strength parameters
in stress space in multiple angle functions

/ Us Us
Fu U, cos28 cos48
Fae U, -cos2b cosé#b
Fiz . U, -cos48
Fes Uy -4cos48
Fis : - sin26 2sin 48
Fss sin28  -2sin 48

where the U’s are defined like those for the compliance in Equation
3.56. The Fj; shall replace the S;;. ‘

table 7.5(b)

transformation of linear strength parameters
in stress space in multiple angle functions

p q
£ / cos28
£ / -cos28
e 2sin28

wherep=-;—(Fx +Fy),q=%(Fx —Fy)

We can derive the transformation equations for the strength param-
eters in strain space by substituting the transformed strain components
into the failure criterion in Equation 7.27. The results are shown in
Table 7.6 for the power functions formulation and Table 7.7 for the
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multiple angle functions. The quadratic parameters transform like the
stiffness components; the linear parameters, the stress components.

table 7.6(a)
transformation of quadratic strength parameters in strain space
in power functions

» Gxx ny ny Gss
G, m* n* 2m?n? 4m?n?
Go, n* m* 2m2n2 4m2np2
G, m®n? m®n* m*+n? -4m?n?
Ges | m?n* m®n? -2m?n? (m? -n?f
G m3n -mn? mn?-mn - 2(mn? -m’n)
Gas mn? -m°n m’n=-mn? 2(m’n-mn’)

m=cosé,n=sinb

table 7.6(b)
transformation of linear strength parameters in
strain space in power functions

Gx Gy
G, m? n?
G n? m?
Gs mn ~mn

table 7.7(a)

transformation of quadratic strength parameters
in strain space in multiple angle functions

/ 7 Y
G, Y, cos28 cos48
Gz U, -cos28 cos46
G, U, -cos46
Ggs Uy - cos48
Gs + sin 26 sin 46
Gz 4 sin26 -sin 46

where the U’s are similar to those for the stiffness in Equation 3.15.
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table 7.7(b)

transformation of linear strength parameters in
strain space in multiple angle functions

P q9
G / cos 28
G, / —cos28
Ge sin 268

wherep=%(Gx +G,)q =%(Gx —G))

We can easily determine the off-axis strength of unidirectional com-
posites by using the transformation relations of the strength param-
eters. The failure criterion in stress space is

Fj0;0; + Fio; = 1; ij =1,2,6 (7.40)

where the F’s are of the off-axis orientation. The simplest case is the
uniaxial tensile and compressive strengths of an off-axis unidirectional
composite. The failure criterion above is reduced to:

F110%+F101—l=0 (7'41)

Using the power function formulation of the transformation equation
in Tables 7.4(a) and (b) respectively, we have

Fyy = m*Fy, +n*F,, + 2m*n®F,, + m*n*Fy
(7.42)

F, m*F, + n*F Y
where m = cosfl, n = sinf. v

There are two roots in the solution of Equation 7.41 corresponding
to the tensile and compressive strengths.
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The off-axis shear strength is simply the roots of:

Fee02 + Feog—1 =0
(7.43)
where Fgg = 4m>m?(F,, + F,,,)) —8m?*n*F, , + (m*—n?)?F
F¢ = 2mn (F, — F))

Using the strength data in Table 7.2 we can predict the off-axis
uniaxial strengths of AS/3501 when 6 is 45 degrees

1

Fy, = 21-(.476 +93.48 —2 X 3.33 + 115.4)
(7.44)
= %(202.7) = 50.2 (GPa)™
F, = -;-(14.5) =7.25(GPay! (7.45)
Sélving for the roots:
502X 10718 02 +7.25X 10° 0, —1=0  (7.46)
0, = =722+ (72.2) + 19920 = —72.2 £ 158
= 86, —230 MPa ' (7.47)

Repeating the same calculation for different ply orientation, we arrive
at the solid lines in Figure 7.6. Available data are shown as circles. *

The normalized interaction term is taken to be —%: for the calcula-
tion above. This is an assumption. If we use the maximum and mini-
mum value of 1 and —I, the limits imposed by ellipses, we have
respectively

F,, = %6.66 (GPa)™
Fy, = 55.6, 49.0 (GPa)™

*Provided by R. Y. Kim, University of Dayton Research Institute
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Substituting these values into Equation 7.46 in place of 50.2 and solv-
ing the quadratic equations, we will have two sets of roots:

For Ff, = 1, o, =83.9, —214MPa
Ff, =—1, 0, =86.9, —234 MPa

The predicted off-axis uniaxial strengths are not sensitive to the value
of the interaction term. At 45 degrees the contribution of this term to
the transformed F is the greatest; see Equation 7.42. As the angle
moves away from 45 degrees the interaction term has even less effect.
Conversely, the uniaxial off-axis test cannot be used to compare or
validate failure criteria. Other combined stress state which the off-axis
test cannot produce would be more discriminating.

1500¢

/1000

500

N/ /h, MPa

-500

-/000

AS/3501 UMDIRECTIONAL

-/ 500¢

Figure 7.6 Uniaxial tensile and compressive strengths of AS/3501
graphite/epoxy composites-as a function of fiber orientations.
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5. strength/stress or strength ratios

Our failure criterion such as that in Equation 7.8 specifies the condition
of failure. The strength parameters expressed in F'’s are fixed for a given
material. The imposed stress components when substituted into the
left-hand side of the failure criterion may produce any positive numer-
ical value. When this value equals unity, the failure criterion is satisfied;
i.e., failure will occur under the given stress components. If the com-
ponents have greater values, the left-hand side of Equation 7.8 exceeds
unity. This is not physically possible. The material cannot sustain such
combination of stress components.

If the imposed stress is smaller, the left-hand side has a value less
than unity. We conclude that failure has not occurred. Thus the failure
criterion like that in Equation 7.8 provides only a go-or-no-go criterion.

We can increase the information given by the failure criterion if we
use a different variable. We define this variable as the strength/stress
ratio, or simply, strength ratio R:

— * _ _
Oia) = R0; €= €, =Reg (7.48)
where stress or strain components without remarks are those applied
or imposed; and subscript (@) or asterisk means the allowed or the
ultimate stress or strain. Several features of this ratio should be

. mentioned.*

® When applied stress or strain is zero, R = oo,

® When the stress or strain is safe, R > 1.

e When the allowable or ultimate stress or strain is reached, R = 1.
® R cannot be less than unity which has no physical reality.

The conventional failure criterion is a fail-or-no-fail criterion.
Strength ratios will not only define the upper bound where the allow-
able or ultimate exist (R = 1), but will also indicate the quantitative
measures of the safety margin. If the ratio is two, it means that the
applied stress can be doubled before failure occurs. ’

Since we have assumed that our material is linearly elastic up to
failure, the strength ratio in stress is equal to that in strain.

*The reciprocal of this is called stress ratio in some design handbooks of metallic structures.
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We also assume proportional loading in Equation 7.48 that for each
applied stress or strain, its unit vector remains fixed up to failure. This
assumption is necessary to define a unique strength ratio from any
starting point. ‘

The starting point of stress or strain application need not be the
origin of the reference coordinate system. If our surface is a sphere, the
starting point can be anywhere within the sphere. Moreover, there are
many reasons for starting from points other than the center or origin.
Besides, initial stress or strain, different tensile and compressive
strengths, and different longitudinal and transverse strengths will all
shift the starting point of stress and strain application.

If the applied stress or strain is a unit vector, the resulting strength
ratio value becomes the allowable. This is a convenient feature of this
ratio from the standpoint of computation.

We will try to illustrate the meaning of strength ratios with simple
examples. Let us first use circles to represent the surfaces of constant
strength ratios. The equation of this family of curves is:

x2 + 2 =1/R?, or ' (7.49)
R? = 1/(x* +)y?) (7.50)

where x, y = stress or strain components.

From the definition of strength ratios in Equation 7.48, we know

Xy = Rx
Y@ = Ry (7.51)

Combining Equations 7.49 and 7.50, we have
2 2
Xy T =1 (7.53)
The strength ratio becomes unity when the stress or strain is at its

allowable level. The curves of Equation 7.49 are shown in Figure 7.7.
We can make the following comments:
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® This material is isotropic with equal
strengths in x and y directions. The
tensile and compressive strengths are
/ also equal.
\\ J X X ® Proportional loading from the origin is
\ / assumed. Each loading path follows a
radius. The strength ratio curves will
change if proportional loading is not
followed. This change will be dis-
cussed later in this chapter.
® The combined stress effect can cer-
tainly be different from a circle. In

fact, the von Mises criterion for plasticity in isotropic materials in
nondimensional stress components is elliptical; see Equation 7.23.

Figure 7.7 Curves for con-
stant strength ratios for an
idealized material.

x2 —xy +y? =1/R?*, or (7.54)
R? = 1/(x? —xy +y?) (7.55)

Instead of concentric circles, we will have concentric ellipses.
However, the strength ratio concept is equally applicable. The
remarks on isotropy, equality in tension and compression, and
proportional loading remain valid for the von Mises case.

If our material has different tensile and compressive strengths but
remains isotropic with circular combined stress effect, Equation 7.53
must be modified as follows:

[x(qy +d1? + [y, +d1* =1 (7.56)

where d = one-half the difference between tensile and combressive
strengths (positive d means higher compressive than tensile strength).

Substituting Equation 7.51 and rearranging, we have
dl? d7?
+=| + |y+=| =1/R?, 7.57
[x R] [y R:‘ / o ( )

(x* + y?)R? +2d(x +y)R — (1 —2d*)=0 (7.58)
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This family of circles is shown in Figure 7.8. The following features can
be noted.

y ® The curves remain circular by the
assumption made in Equation 7.56.
® The radius is inversely proportional

to the square of the strength ratio.
NV

Proportional loading starts from the

d . ) .
. origin of the x-y coordinates.
t ® The center of each strength ratio is
no longer fixed in one position.
® The circles are displaced by an
amount inverscly proportional to
the strength ratio.

Figure 7.8 Surfaces for constant
strength ratios for an idealized
isotropic material having differ-
ent tensile and compressive
strengths.

Another perturbation of the curves of
constant strength ratio can come from
initial stress.

Let us assume that initial tensile stress
components exist. Then, analogous to
Equation 7.57, we have

2

) R s [y o 7.59
[rx) e beR] e (75

[x2 +y2]R? + 2[x,x + Y, yIR—[1 —x2 —y2] =0 (7.60)

Judging from this equation as compared with Equation 7.57, there is no
qualitative difference between the two. The only difference is the dis-
placements of the centers of successive circles. The curves for Equation
7.59 will look essentially the same as those in Figure 7.8.

For our unidirectional composite, the failure criteria listed in Equa-
tions 7.1 to 7.4 can be easily modified by introducing strength ratios
defined in Equation 7.48.

0ia) = Ro; €i(ay = Re; (7.61)
Failure occurs when the allowed stress or strain on the left-hand side of
Equation 7.61 is reached. Thus Equations 7.3 and 7.4 actually apply to
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the allowable quantities, or
Fij0i(2)%(ay * FiOia) = 1

Substituting Equation 7.61,

[Giieiei]Rz + [GIGI]R - l = 0

(7.62)

or aR* + bR -1 =0 (7.63)

Instead of solving for the stress or strain, we solve for the strength ratio.
There are to conjugate roots, R and R’ corresponding to the applied
stress/strain vector going in opposite directions; i.e.,

R, R' = +/(b/2a)* + (1/a) + (b/2a) (7.64)
Usually only R is needed, R’ is useful for bending.

6. in-plane strength of laminates

The in-plane strength of laminates is determined by examining the
strength ratios of each ply orientation subjected to a given state of
stress resultants. The ply with the lowest strength ratio will fail first.
The state of stress resultant when this ply failure occurs is called
the first-ply-failure state. The plies with higher strength ratios will
fail later, when the externally applied stress is increased. This successive
ply failure progresses until the last ply or ultimate failure occurs. The
ply-by-ply examination can be expressed in Figure 7.9 The relation be-
tween in-plane strain and the applied stress resultant is from Chapter 4:

€ =a,N, (7.65)

Substituting: this into Equation (7.62) for a ply with 6 orientation:

(G 7 €7 )RTgy + [G]? €7 1R (5 =1 =0 (7.66)
(G a,a; Ny NAIRYy) + [G® ayN; 1Ry —1=0  (7.67)

(H(} NNfIR ) + [HD NjIR gy~ 1= 0 (7.68)
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where
(0) — ((6) i (8) = (7(0) ‘
HY = Gy’ ayayy, H; G;% ay : (7.69)
Ry = Strength ratio of the 6 ply orientation
f h
iy "’6/0/ Ro /PI’OI
o X
Q,vz TEZ . ‘
- T‘pNs, ‘fs “ N7 fx(m ’
'_‘@* N e Flas + Flasy
vl - / / \
'
(90)
e . - 'f !
<[ [l1]— Row R
rea , "'re0)
| ,
ai/’ rf* G;Y ’ G\/
(a) ————=(b) — > (¢c)] ————=(d)
Stress /n-Plane P/ '
Resultants 5‘/ra/'//77 Sfra}/"n .Sf‘?fg%gfh

8)  (8)
L Hij, H;

Figure 7.9 Ply-by-ply strength ratios of a laminate. For given
laminate stress resultants or in-plane strains, ply strains can be
calculated. Then the strength ratios can be readily determined.
The lowest strength ratio ply is the first ply to fail.

The in-plane strength of a multidirectional laminate will have multi-
ple strength ratios; one set (R and R") for each ply orientation. The ply
with the lowest ratio will be the first to fail, the FPF. Two factors
control the ply failures in a laminate. First, the in-plane compliance a.
This is -a function of the ply volume fractions. The function is non-
linear; see Figures 4.7 and 4.9. The specific ply orientation is the

. second factor. The H functions in Equation 7.69 are vector products of

the transformed strength parameters G’s of the ply and the in-plane
compliance of the laminate. The H functions provide a direct link
between (a) and (d) in Figure 7.9 for each ply.
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The ply failure stress levels for T300/5208 cross-ply laminates based
on the normalized stress resultant (N/k) are listed in Table 7.8. For
each applied unit stress, the strength ratios are now equal to the ulti-
mate strengths. We list the strengths for the 0 and 90 degree plies. For
example; the first line in Table 7.8 shows the case of hydrostatic stress

applied to a [0/90] laminate. The tensile failure would occur at 302 ~

MPa, and compressive failure at 1960 MPa. Both plies would fail simul-
taneously. The first and last ply failures coincide.

table 7.8

selected ply failure stress of cross-ply laminates, in MPa
Unit .
stress 0-degree ply 90-degree ply
Laminates vector Ro) R('o) Reg0) Rige)
[0/90] (1,1,0) 302 1960 302 1960
(1,0,0) 681 1107 373 2268
(0,1,0) 373 2268 681 1107
(1,-1,0) §§f 351 351 ‘856
[0,/90] (1,1,0) 240 1830 303 1334
(1,0,0) 892 1413 485 2915
2,1,0) 208 1282 200 1360
(1,-1,0) 941 260 389 597
(0,1,0) 262 1602 476 785
[0/90;] (1,1,0) 303 1334 240 1830
(1,0,0) 476 785 262 1602
(1,2,0) 200 1360 208 1283
(2,1,0) 192 543 126 925
[06/90] (1,1,0) 133 . 951 207 541
(1,0,0) 1159 1691 614 3562
(0,1,0) 135 829 244 407
(1,71,0) 675 135 300 276

The second line in Table 7.8 shows that under uniaxial tensile load,
the 90-degree ply would fail at 373 MPa, and the O-degree at 681 MPa.
In compression, the first ply failure would be in the O-degree ply at
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1107 MPa, while the 90-degree will not fail until 2268 MPa.

The complete failure envelopes for various cross-ply laminates are
shown  in stress space in Figure 7.10. The inner boundary or the over-
lapped area is the FPF locus; the outer boundary, the ultimate failure

locus.

-4 -3 -2 -7
— e

(0/20)
N

/

(02/90)

Figure 7.10 Failure envelopes in normal stress resultant space for
T300/5208 cross-ply laminates. A unidirectional composite (Figure
7.3) is also shown to indicate the degree of change in ply failure
envelopes within a laminate. The unit for the laminates is MPa.
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If simultaneous failure of all plies is an optimum condition for a
laminate design, it is possible to achieve it only in the first and third
quadrants in the stress space. The envelopes do not coincide in the
other quadrants. For hydrostatic stress, the [0/90] would be the
optimum. This is intuitively obvious. If the stress ratio is 2:1 or the unit
vector is (2,1,0), we see in Table 7.8 that the [0,/90] laminate would
be approximately optimum. A more exact ratio should be 2:1.1. We are
within 10 percent of the optimum if we use 2:1. Thus a simple-minded
model of matching the ply ratio with the stress ratios is fairly good.
This approach is called the netting analysis. But netting analysis does
not cover the second and fourth quadrants.

We can superpose all the laminates in Figure 7.10 and determine the
optimum ply ratio for any stress ratio. We are restricting ourselves to
the zero shear plane which is also the principal stress plane. This is done
in Figure 7.11. This figure provides a quick estimate of the required
number of plies and the ply ratio of a cross-ply laminate. '

For a hydrostatic tension (N, = N, = p) of 3.02 MN/m we know
from Table 7.8 and Figure 7.11 that the [0/90] or ply ratio equal to
unity would be the optimum. The laminate thickness required

3.02
n= 302_ o 7.70
302 m (7.70)

The number of plies

_ Aol |
n = X 108 80 plies (7.71)

KNS
h, 125

The optimum laminate is [040/9040].

Suppose we have

N, = —N, =3.5] MN/m (7.72)

For [0/90] laminate the lower strength is the 90 degree ply from Table
7.8.

h = == =.01 m or 80 plies (7.73)

3.51
351
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The laminate is the same as the above, or [0;4/90401. i3ut, if we use
[0,/90], the strength is now 389.

h = 3.51 .00902 m or approximately 72 plies (7.74)

389

The optimum laminate should be [0,5/905,4]. the the significant
difference between the two laminates.

No/h
A
1000
Vs
%5
b, & '
3, (0/90¢)
7 2
P Q"o (0/90,)
p 2,&0 4 (0/50)
%,&o Y (0,/90)
L = 1 ~\ (0g/20)

== N, /h,MPa

o
’&O
(Y]

Figure 7.11 Maximum first ply failure envelope of T300/5208 cross-ply laminates.
All 0 and all 90-degree unidirectional composites are not included.
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The failure envelopes of multidirectional laminates can also be shown For different ply ratios, the externally applied loads will follow dif-
in strain space. This is obtained by using the strength parameters in ferent loading paths in strain space. For uniaxial tension or compressive
strain space listed in Equation 7.37 for the T300/5208. Or we can use stresses, the resulting loading paths have slopes equal to their Poisson’s
the parameters in Table 7.3 if we are interested in AS/3501. Substi- ratios. This was shown in Figure 7.4 for unidirectional composites
tuting the data in Equation 7.66 for the multidirectional laminate, T300/5208. For cross-ply laminates of various ply ratios, the loading
we obtain the failure envelopes in strain space shown in Figure 7.12. paths as dictated by Poisson’s ratios are shown in Figure 7.13.

4 <-2' /0-3 [{2’ /0'3

- /0 /0

[o]
- / —
[0y790] %
| . , [0799, -
-30 10 =30 [s0] -20 -/10
€ .10~

=30
Figure 7.12 Failure envelopes of 0 and 90 degree plies in cross-ply ; . . . L. .
laminates of T300/5208. Ply ratios do not change the failure envelopes Figure 7.13 Loadl_ng F.’a‘_hs for various p_ly ratios in cross-ply lammates.of

in strain space. . T300/5208. Loading is limited to uniaxial stresses. The slopes of the lines

are therefore equal to the Poisson’s ratio of particular laminates.

The key feature of these envelopes is that they remain fixed for each
ply orientation, independent of the ply ratios. This is true because the
laminate compliance does not appear in the failure criterion in Equa-
tion 7.66. For each laminate, the loading path in strain space will vary.
This was not the case for the stress space version of the failure criterion.

We can then combine the loading paths in Figure 7.13 with the.
failure surfaces in Figure 7.12. This is done in Figure 7.14. For each
loading vector, there is also the reversed (unloading) vector which
changes the sign for all the strain components. The strength ratio based
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Figure 7.14 Superposed failure envelopes of plies in cross-ply lam-
inates of T300/5208. This figure is the sum of Figures 7.12 and 7.13.

on strains will provide the numerical margin of safety; i.e., how much
increase the strain can sustain before failure.

The failure envelopes in strain or in-plane strain space in Figure 7.14
are governed by Equation 7.66. Laminate compliance is not included in
the equation. Only. ply orientations appear through the strain param-
eters, the G’s. For a bidirectional laminate, there are only two ply
envelopes and their shape and position remain fixed independent of the
ply ratios. The loading path in strain space will change as we change the
ply ratio. Several common loading paths are shown in Figure 7.13.

The failure envelopes of multidirectional laminates can be illustrated
in a number of ways. Each representation has its own advantages and
reveals one or more aspects of the interaction within a laminate. Only
with a good understanding of the lamina-laminate relation can we use
composite materials effectively.
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The laminate will have the first ply failure in the ply with the lowest
strength ratio. After the first ply failure, the laminate may be able to
continue until all plies have failed. The calculation of the laminate
behavior after the first ply failure is not easy to perform. The laminate
compliance is increased, or laminate modulus is decreased. Internal
damage is induced by the first ply failure. An iterative process is re-
quired to assess the successive ply failures. This process is not well
defined and will not be covered here. If we assume that ply failures do
not affect the laminate compliance, the ultimate strength of the lam-
inate can be determined from the highest strength ratio among the
plies. This approximation is not unreasonable if all ply failures up to
the ultimate strength of the laminate are limited to matrix failures and
do not involve fiber failures. The loss of transverse stiffness of many
unidirectional plies may not significantly affect the in-plane stiffness of
the laminate. Figure 3.8 shows the change in the off-axis modulus of
T300/5208 when transverse stiffness goes to zero.

It is reasonable to assume that damage initiation and accumulation
do not occur if a laminate is kept below the first ply failure level. This
level is equivalent to the yield stress of conventional materials. It is a
conservative criterion to design a laminate based on the FPF stress or
strain. In the next section the FPF envelope can be approximated by
simple geometric bodies in the strain space. A direct comparison of the
strength capability between a multidirectional composite and other
materials becomes possible.

7. approximate first ply failure ehvelopes

The failure envelopes in strain space are independent of the ply orienta-
tions. We showed the T300/5208 [0,,/90,, ] laminates in Figures 7.12
and 7.14. The loading paths in strain space, however, are sensitive to
the ply ratios or stacking sequence. The laminate compliance enters
into the determination of loading paths. Uniaxial loadings have slopes
equal to the Poisson’s ratio of the laminate. Several loading paths are
shown in Figures 7.13 and 7.14.

We show the failure envelopes of other ply orientations in Figure
7.15. There is a first ply failure domain common to all ply orientations,
independent of the stacking sequence of the laminate. In this plane
(e; — €,) the envelopes change shape and location as the ply orienta-
tion changes. They do not move like rigid bodies.
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Figure 7.15 Failure envelopes of T300/5208 off-axis plies in the normal
strain space.

We can repéét the representation of failure envelopes in the \/-Z-q -

Vr space, where the square root of two comes from the coordinate

transformation equations in Equation 2.38. We have previously
defined:

8
Il

(e, —e€3)

N | —

(7.75)

~
I

B | —
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_For the case of

p=%—(e1 +€,)=0 (7.76)
the failure envelope of a 0-degree ply is shown in Figure 7.16.
&, 10°
vep
/
€
" 1
5 0
Vv2q

Figure 7.16 The failure envelope of a T300/5208 0-degree ply in
the q-r strain space with Zero p. * " -

As ply orientation changes, the failure envelopes in the g-» space or the
equivalent constant p space undergo rigid body rotations at an angular
velocity of 20. The inner locus of the revolving failure envelope is the
exact FPF envelope when we have infinite number of ply orientations.
This envelope is conservative for finite number of orientations. For

example, Figure 7.17 shows the margin of conservatism for a [0/30]
laminate.
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Figure 7.17 Difference between the actual and the approximate failure
envelopes of a [0/30] laminate,

The approximate FPF envelope is compared directly with the actual
FPF envelope of this laminate. For most other laminates, this margin
becomes much smaller. Figure 7.18 shows the rapid convergence
toward the approximate first ply failure envelope with radius R for a
laminate of [0/30/90].

We can show the results above analytically by expressing the failure
criterion in strain space in terms of p,q,r.* By direct substitution into
the general (off-axis) failure criterion.

*See reference by H. T. Hahn and S. W. Tsai, “Graphical Determination of Stiffness and Strengfh
of Composite Laminates,” Journal of Composite Materials, Volume 8, pp. 160—-177, 1974.
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(Gy1 +2G,, + Gzz)l’2 +(Gy1 —2G,; + Gy2)q% +4G4r?
2Gyy —Gaa)pg + MGy + Grglpr+ 4(Gr6 —Gar6)qr

+ (Gl + 62 )p + (Gl _Grz)q + 206": l (7.77)

) &, 167

Figure 7.18 The approximate first ply failure envelope of a tridirectional
T300/5208 laminate. The envelope is a circle in the g-r space which is
convenient analytically.

We can substitute the transformation equations of the strength param-
eters in Table 7.7, and move all invariant terms to the right-hand side of
equation, we have :

4Us + Us)q" + 4(Us — U3 + @Uyp + 245)q"

=1=2[U; + Us)p? + pgp] (7.78)
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where the U’s are the linear combinations the G’s (not the modulus of
unidirectional composites). The transformed ¢ and r are defined in
Table 2.14. They correspond to the result of a rigid body rotation with
angular displacement 20 shown in Figures 7.16 to 7.18. Linear combina-
tions of the linear strength parameters are defined in Table 7.7(b).

We can specialize the general equation of the failure envelope to
special cases:

® Let g’ and #’ be zero.
20U, +Ugp? +2pgp—1=0 (7.79)
where for T300/5208 in Table 7.3

2V, +Uy) = Gy, +G,, +26,,

= 16546 ,
(7.80)
2pG = Gx + Gy
=277
Solving for p,
p=3.05X%X10"3, —19.79 X 1073 (7.81)

These points are shown as P and P’ in Figure 7.15. They represent
the hydrostatic strain capability of the laminate. They are in-
dependent of the ply orientation.

® Let p and 7' be zero.
4(Us + Us)g'? +2q5,4' —1=0 (7.82)
where
4Us + Us) = G, +G,, — 26,

28822

(7.83)

G, —G

29 y

= —155.86
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Solving for q’,
' 9.185 X 1073, —3.77 X 1073
V2q'

These points are the incepts of the g-axis shown in Figure 7.16.

<
I

(7.84)

1298 X103, —5.34 X 1073

® Let p and ¢’ be zero.
4Us —Us)r'? =1 (7.85)
where -
4Us — U3) = 4G

= 44471 (7.86)

r +4.74 X 1073
Vor

These points are the intercepts of the r-axis for the 0-degree ply.
They are shown in Figure 7.16.

£6.70 X 1073 (7.87)

1

From the calculations above we know that the approximate first ply
failure envelope for T300/5208 is anchored by the two hydrostatic
points, P and P’ in Figure 7.15 et al. The radius R in the g-r space from
Equation 7.84 is:

R =2X3.77 X‘:10'3 =5.34X1073 (7.88)

This simple description of the failure envelope is accurate for laminates
with several ply orientations. This was shown in Figures 7.16 to 7.18. A
direct comparison of a composite laminate with the conventional
material is now possible. This is analogous to the quasi-isotropic con-
stants of a composite materials which represent the minimum stiffness
capability. Our invariant representation of the failure envelope here is
also the minimum capability in strength of our composite laminate.
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This approximate FPF is conservative and is safe because damage initia-
tion and accumulation are not likely to occur. )

In Figure 7.19 a direct comparison between the approximate FPF of
T300/5208 and the high strength aluminum listed in Table 7.3 is pre-

sented. The aluminum envelope is approximate, and is based on the

ultimate strength and on tlfe von Mises failure criterion. The FPF
envelope is closer to the conventional yielding than the ultimate. The
weight advantage of the graphite-epoxy composite is not included in
the comparison in Figure 7.19. If yielding is used as the basis and the
40 percent weight advantage is claimed, the resulting circles for this
high strength aluminum will be very small. It is fair to say that the
strength advantage of composite materials is greater than the stiffness
advantage.

A e 107

6 ﬂp

€107

ot

ALUMINUM
(ULTIMATE)

v2q

APPROX FPF

Figure 7.19 Comparison of failure envelopes of T300/5208 with a high
strength aluminum. The approximate first ply failure envelope is used for
the composite material. The aluminum failure is based on the ultimate and
the von Mises criterion.
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Further approximations of the FPF envelope can be made if more
simplification is needed. For example, the approximate FPF in Figure
7.19 and 7.15 can be replaced by an ellipsoid with circular cross section
in the g-r space. In place of the segmented FPF curves in the p-¢g plane,
an elliptic cross section that inscribes or circumscribes the FPF curves
can be found. This approximate FPF envelope will take the following
form:

PP at+r
a2 b2

=V - (7.89)

where a, b are the semi-major axes of the ellipsoid, p, the shift of the
center of the ellipsoid from the origin. From Equations 7.79 et al., we

can derive the following relations:

D
Pp = ———o (7.90)
2U, +U,)
a= \/poz TN E— (7.91)
22U, +Uy)

. qg 4G 2 1
bperoo = min | —————"—-t \/[ ] +
p 4(Us + Us) 4Us + Uy) 4Us + U3)
(7.92)

This approximate envelope can also be expressed by:

Gie €+ Ge =1 (7.93)

where 5,-]-, 6,- are the strength parameters for the approximate FPF.
Comparing Equation 7.89 and 7.93, we can show the following
relations:

= — 1 a® +b?

11 22 T3 2 —p,? ( )
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= 1 a2 —b? (7.95)
Cia==r a3
= 1 = = 1 a? (7.96)
66 2 il 12 4b2 (l2 _po2
pl
Gl = (—;2 =—— id 5 ' (7.97)
a® —p,

Ge =626=516=0 (7.98)

There are only three independent strength parameters.
Other simplifications are possible, such as making

. =b = b, (7.99)
or _ p, =0 ) (7.100)

in Equation 7.89. Instead of ellipsoid for the approximate FPF, we have

spheres. _ .
When we have both conditions in Equations 7.99 and 7.100,

pt kg P =b%/2 (7.101)

or
€2 +6,? +%662 =5 (7.102)

where for T300/5208,

bo= 4X 107 (7.103)

This simple approach is preferred over the maximum strain criterion
because the analytic foundation is preserved in Equation 7.102.

The successive levels of approximation can be explicitly stated with-
out changing internal consistency. The invariant nature and the ply
orientation independence of various FPF envelopes are retained. The
orientation dependency of the more complex relations in Equation
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7.66 et al. can be replaced by approximate FPF envelopes. Direct com-
parisons among different composite materials and conventional mate-
rials are now possible. Laminate optimization and sizing can be carried
out on a rational basis. The simplifications embodied in the approx-
imate FPF envelopes can lead to straightforward and analytically con-
sistent design procedure. To design for strength becomes as simple for
composite materials as that for conventional materials.

8. conclusions

The quadratic interaction failure criterion in-stress and strain space is
recommended for unidirectional and multidirectional composite mate-
rials. This approach is easy to use because the coefficients of the failure
criterion are components of tensors. Established transformation equa-
tions and invariants can be used. Depending on the accuracy desired,
several levels of simplifications can be achieved. An important facet of
this approach is the resulting rigid body rotation of the failure envelope
in the g@-r strain space. The angular displacement of the rotation is
precisely twice the ply orientation. The inner locus of the rotated
failure envelope is a circle. Taking advantage of the rigid body rotation,
this approximate FPF is invariant, independent of the ply orientation.
The ultimate failure of a laminate, on the other hand, cannot be readily
reduced to an orientation independent representation. The approximate
FPF envelope is conservative and provides a basis for simplified design
and sizing procedure not possible with the exact FPF envelope. In the
latter case, ply-by-ply orientation becomes necessary.
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. homework problems

. What is the highest FPF stress of a T300/5208 cross-ply laminate
under uniaxial compression? At what ply ratio does the maximum

strength occur? For example, the FPF stress [0g /90] is 1691 MPa in’

Table 7.8. What is the physical explanation of this result above?

. How do we calculate the exact intercept of approximate FPF on the
positive €, or €, axis in Figure 7.19? Is it the same as the failure
strain listed in Equation 7.32?

. What can we say about the validity and usefulness of the maximum
strain criterion in Equation 7.2?

. What are the values of @, b and p, in Equation 7.89 for T300/5208

assuming the ellipsoid would circumscribe the segmented FPF in
Figure 7.15; i.e., passing through P and P'? Is this envelope con-
servative? What are the values of G;?

. How can the approximate FPF in Problem d be represented in the
stress-resultant space? Compare the result with all the exact FPF
envelopes in Figure 7.10.

. Show failure envelopes in stress and strain space of Kevlar 49 com-
posite materials listed in Tables 7.2 and 7.3. What are the effects of
the low longitudinal compressive strength on the approximate FPF
envelopes?
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nomenclature

Ey, E,, E; = Young’s and shear moduli

Fy, F; = Strength parameters in stress space; i,/ = x,y,x or 1,2,6
(_;i;, (_;,- = Strength parameters in strain space

Gij, G; = First-ply-failure strength parameters in strain space
H(il‘.’), H,@) = Strength parameters of the 6-degree ply in a laminate
D, q = Linear combinations of first rank strength parameters
R4y, R(yy = Strength ratios of the 8-degree ply

S = Longitudinal-transverse shear strength

U; = Linear combinations of second rank strength parameters
X, X = Longitudinal tensile and compressive strengths

Y, Y = Transverse tensile and compressive strengths

X, Y, = Normalized stress components

o; = Stress components;i = x,y,s or 1,2,6

€; = Strain components; i = x,y,s or 1,2,6

€;* = Ultimate strains; i = x, y, s

v; = Poisson’s ratios; i = x,y

FPF = First Ply Failure



chapter 8
hygrothermal behavior

Deformation is also possible upon change of temperature and upon
absorption of moisture. The matrix material is much more susceptible
to hygrothermal deformation than the fiber. The hygrothermal defor-
mation of a unidirectional composite is therefore much higher in the
transverse direction than in the longitudinal direction. Such anisotropy
in deformation results in the presence of residual stresses in composite
laminates because the multidirectionality of fiber orientation prohibits
free deformation. The temperature change and moisture absorption also
change mechanical properties. Therefore, hygrothermal behavior affects
not only dimensional stability but also safety of structures.
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1. heat conduction and moisture diffusion

Whereas the mechanical behavior is described by the stiffness or the
compliance matrix in Chapter 1, the heat conduction in the linear
theory is described by the thermal conductivity matrix KT * Specif-
ically, the heat flux q, per unit area per unit time in the x; dlrectlon is
related to the temperature gradient T in the x; direction by

al = —KL T, (8.1)

Note that T is the temperature and T,,- is its partial derivative with
respect to X;.

In the material symmetry axes of unidirectional composite, the only
heat flux possible due to the temperature gradient T; is q,-T . Therefore,
Equation 8.1 reduces to

q){ = _KJ{ Tox
) = —KI'T, (8.2)
QZT = _KzT T,

Furthermore, since unidirectional composites are isotropic in a plane
normal to the fibers, i.e., they are transversely isotropic, the thermal
conductivities K}: and KT are equal to each other,

KT = KT (8.3)
Thus, only two independent thermal conductivities can describe the
heat conduction behavior of a unidirectional composite.

Equation 8.2 is valid only in the material symmetry axes. If a differ-
eént system of axes is chosen, it should be changed accordingly. We
recall that the transformation of stress was obtained from the balance
of forces. The transformation of heat flux, however, follows from the
balance of energy.

Consider an infinitesimal triangular element as shown in Figure 8.1.

*“Regular notation, not contracted notation, is used here. Contracted notation cannot be applied
to vectors.
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r
%
AB=ck, AC=dy , BC=ax,
m=cos8,n=sinb

Figure 8.1 Energy balance for an
infinitesimal triangular element. All
heat flux components shown are ___
positive. The x; axis is normal to BC.

For convenience the thickness of the element is taken as unity. In the
absence of any heat source or sink within the element, the total heat
influx must be equal to the total heat efflux. That is,

gl dy + q7 dx = 4T dx, (8.4)

Dividing both sides by dx,, and using m = cos8, n = sinf, we obtain

a7 = qfm—qln (8.5)
The equation for g1 follows similarly as

gy = qIln+qlm ‘ (8.6)

Finally, since the rotation is around the z-axis, there is no change in qu ;
ie., '

qf = qf (8.7)
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The transformation of the temperature gradient can be derived

similarly to that of the strain, from the chain rule of differentiation.

For example, _
oT _ oT ox
ox, ox 0x,

+ oT ay. (8.8)
ay 8x1

Noting that the x-y axes have been rotated from the x;-x, axes through
the angle —0, we rewrite Equation 8.8 as

oT oT —ﬂn ' (8.9)

ox, ox ay

The equations for 37/3x, and 37/dx; are as follows:

or _or LoT,, (8.10)
ax2 E)x ay

orT _ 9T (8.11)
0x4 oz

With the transformation equations known for both heat flux and
temperature gradient, we can now express the heat conductivities in the
new coordinate system in terms of those in the material symmetry axes.
To thisend we first substitute Equation 8.2 into Equation 8.5 to obtain

qT = —KI T, m+K, T,n (8.12)

X
Solving Equation 8.9 and 8.10 for T, and T,, and substituting the
resulting equations into Equation 8.12 leads to
g7 = —(KIm® +KI n®)T,, —(KL —KI)mn T,
(8.13)

Therefore, the heat conductivities K Tl and X Tz in the new coordinate
system are given by :

T
Kiy

m? KT + n? K;
(8.14)
KT,

mn (KT — KT)

o o LS e 5 i e
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A similar approach for qz leads to K2T2 :
KI, =n? KT +m? KT (8.15)

Needless to say, KT3 is simply equal to KT

Equatlons 8. 14 and 8.15 are the same as those for the stress if we
equate K“, Kn and K12 to 0,, g, and g, respectively. Mathemat-
ically, the stress, the strain and the heat conductivity are the same
second-rank tensors although they represent physically different quan-
tities. Thus, their transformation equations are the same.

The foregoing equations for heat conduction are equally applicable
to moisture diffusion. In the latter case, the heat flux q,-T is replaced by
the moisture flux qf’, and the temperature graduent T, ;by the moisture
concentration gradient H,;. Here the moisture concentration H is
defined by

_ ;. mass of moisture in AV
H =1lim
AV -0 AV

(8.16)

Thus H is a measure of the amount of moisture at a point.
The relation between ¢ and H,; jis expressed in terms of the mois-
ture diffusion coefficient K” SO that

Because of the material symmetry, Equation 8.17 for umdlrectlonal
composites reduces to

q? = —K? H,
@ =—KJH, (8.18)
qf = —Kk#

where LA |
KY = KH (8.19)

It goes without saying that the same reduction was possible for g7, see
Equation 8.2. Furthermore, the transformation equations for q{” , H,;
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and Kf,! are the same as those for q7, T,; and Kg, respectively. Note

that the transformation equation for g’ follows from the balance of
mass whereas the balance of energy was used for qiT . The physical
dimensions of the hygrothermal variables introduced so far are listed in
Table 8.1.

table 8.1
units of hygrothermal properties
Temperature K Moisture concentration g/m?
Temperature Moisture concentration

gradient K/m gradient g/m*
Heat flux W/m? Moisture flux g/(m?+s)
Thermal Moisture diffusion

conductivity W/(m-K) coefficient m?2/s
Thermal Specific moisture

diffusivity m?2/s concentration  glg
Specific heat 3/(g-K)

Of particular interest in studying the hygrothermal behavior of com-
posites is the one-dimensional diffusion through the thickness, i.e., in
the z direction. This is the situation when a thin laminate is subjected
to a change in its environment, Figure 8.2. Suppose the initial tempera-
ture and moisture concentration are uniform throughout the laminate

and are denoted by T} and H,, respectively. The environmental change -~

is such that the temperature and moisture concentration at the surfaces
are maintained at T_ and H_, respectively. It is then necessary to

. determine the distributions of T and H through the thickness as time
changes. :

The governing equation for T'is obtained from the balance of energy.
Consider an’ infinitesimal element dz, Figure 8.2(b). The heat influx
through the unit area of the left face is q7 while the heat efflux
through the right face is qu + an/az dz. On the other hand, the
increase in the energy stored per unit time within the element is
pC 8T/dt dz where C is the specific heat. Since there.is no heat source

*Here T, is used to denote the initial temperature. However, in later sections 7, represents the
stress-free temperature.
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Figure 8.2 A thin laminate subjected to an environmental change.

or sink, the balance of energy requires that

dq] T |
T — gl +==%dz) =pCc—=
q: (qz oz Z> pC 31 dz, (8.20)
i.e.,
aqr Y
- =pC <=
FyS p 31 (8.21)

where p is the mass density of the composite. Finally, substitution of
Equation 8.2 into Equation 8.21 leads to

— — - ,,,HAa,v.. . . aT : ,aT . S R . - -
5 (KZT zﬁ) =pC - (8.22)

Furthermore, if KzT and pC are constant, Equation 8.22 can be
reduced to
KZT azT_ oT

oC 57 "l (8.23)

This is known as Fourier’s equation.
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The equation for moisture diffusion can be derived similarly from
the balance of mass as
D (gu OH)_ o4 (8.24)
0z 0z ot
Again, if Kf is constant, Equation 8.24 can be reduced to Fick’s
equation

xo LH _oH (8.25)

0z ot

A comparison of Equations 8.23 and 8.25 reveals that these equa-
tions are identical in form to each other, indicating the similarity of the
underlying processes. The thermal diffusivity K7 /(pC) and the moisture
diffusion coefficient KX are a measure of the rate at which the temper-
ature and the moisture concentration respectively change within the
material. In general, these parameters depend on the temperature and

moisture concentration. However, over the range of temperature and =~

moisture concentration that prevails in typical applications of com-
posites, the thermal diffusivity is about 10° times greater than the
moisture diffusion coefficient. Thus, the thermal diffusion takes place
108 times faster than the moisture diffusion. As a result, the tempera-
ture will reach equilibrium long before the moisture concentration
does. This observation allows one to solve Equation 8.25 separately
from Equation 8.23. ,

In the study of the hygrothermal behavior of composites the specific

moisture concentration defined by
c=H/p (8.26)

is frequently used in lieu of H. Physically, ¢ represents the amount of
moisture as a fraction of the dry mass of composite, i.e. ‘

lim mass of moisture in AV (8.27)
sv—o massof dry composite of volume AV

CcC =
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In terms of ¢ Equation 8.25 becomes

H d%c - ac ’
322 31 (8.28)

where the subscript has been dropped off Kﬁ’ for convenience. The
appropriate boundary conditions are ‘

c=c, for0<z<hattr<O0

(8.29)
c=c, forz=0and hatt>0

Here 4 is the thickness of the laminate in Figure 8.2. The solution to
Equations 8.28 and 8.29 is given by [1]

c—c¢ - = . . 2.2 H
~ ° —1 _4 .l> sin 2j+1)7wz exp _ 2+ 7 K7t
T } 0: 2j+1 h 2
=

t8.30)

Equation 8.30 is shown graphically in Figure 8.3 where the non-
dimensional time K ¢t/h? has been used. Note that ¢ eventually reaches
¢, throughout the laminate. Therefore, c., is also called the equilib-
rium (specific) moisture concentration. -

In a moisture absorption test the final moisture concentration c,, is
always greater than the initial one c,. The converse is true in a moisture
desorption test. However, Equation 8.30 is equally valid in either case.

In actual experiments the sample frequently is weighed to determine
the moisture content which is the total mass of the absorbed moisture
divided by the dry weight of the sample. The moisture content is in fact
the same as the average specific moisture concentration ¢ defined by

-1 [f* .
c=z./;: cdz (8.31)

Substituting Equation 8.30 into Equation 8.31 and noting that

c=c,att=0

- (8.32)
C=C, atf =00
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we obtain

— N +1)2m KH 1
% =1 --_8_. Z __l_exp —(_2_]_2_%__—
c—c 7 L Q1) h

=0 (8.33)

Figure 8.3 Moisture profile as a function of time. The numbers
are the values of the nondimensional time K t/n?.

Equation 8.33 is compared with experimental data in Figgre 8.4. (2]
Since the moisture diffusion is through the thickness, ‘1t doe; not
depend on the type of laminate. Also, Equation 8.33 is applicable

regardless of the type of diffusion. .
For ¢ sufficiently large Equation 8.33 can be approximated by the

first term in the series,

= 2 gH
T _ -8 exp <_1f_¥> (8.34)
Coo—Co w2 h

On the other hand, for shbrt times an approximation can be obtained
from an alternate solution [1] as

e _, (KEt\" (8.35)
Coo—C, mh?
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Figure 8.4 Experimental correlation of Equation 8.33 for
graphite/epoxy laminates: unidirectional (O,®) and quasi-
isotropic (2,®). [2] Open and filled symbols represent -
absorption and desorption, respectively.

Thus, the initial increase in moisture content is proportional to (t/h2)%.
Equations 8.34 and 8.35 are frequently used to determine K from
the measurements of moisture concentration. From Equation 8.34, the

time #,, for which (¢—c,)/(c.—¢,) = Y, is given by

2
h>_ 1,16 (8.36)

t T m——
AT pakH T 2

Therefore, the diffusion coefficient is determined from the half-time of
sorption process as '

_ 0.04895 K2
ty,

KH (8.37)

The applicability of Equation 8.35 becomes apparent if the moisture
content is plotted as a function of /7. A relationship between ¢ and
v/ 1 is schematically shown in Figure 8.5. From the figure we choose, in
the linear region, two moisture contents ¢, and ¢, corresponding to ¢,
and ?,, respectively. Substituting these values into Equation 8.35 and
solving the resulting equations for K, we can determine K as

- =\ 2 2
€27 €y h
ko= T Z—) | = (8.38)
16 <c°‘_60> <V 2 TV tl) '
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Figure 8.5 Determination of diffusion
coefficient.

The equilibrium moisture concentration depends on the environ-
ment. In humid air it is related to the relative humidity ¢ in percent by

a power law
6 )° (8.39)
Co = — .
{100

where a and b are material constants. A set of data bearing such rela-
tionship is shown in Figure 8.6.

The moisture diffusion coefficient strongly depends on temperature.
The relationship can be described by an equation of the form

H H Eq
KH = K exp —1—27 (8.40)

where K# and E, are the pre-exponential factor and activation energy,
respectively, and R is the gas constant (=1.987 cal/(mole * K)). For the
graphite/epoxy composite of Figure 8.6 a relationship between K# and
T is shown in Figure 8.7. [3]

Typical hygrothermal properties of a graphite/epoxy composite are
summarized in Table 8.2. From the table we can find, for example, that
the equilibrium moisture content at 100% relative humidity is 1.8%. At
room temperature (=23°C) the moisture diffusion coefficient is only
2.62 X 10™® mm?2/s whereas the thermal diffusivity in the transverse
direction is 0.45 mm?/s.
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Figure 8.6 Equilibrium moisture content as a function
of relative humidity for AS/3501-5. (® [3],4 [4],m[5]).
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Figure 8.7 Transverse diffusion coefficient as a function
of temperature for AS/3501-5. (® (3], 4 [4],® [5]).
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table 8.2
typical hygrothermal properties of unidirectional graphite/epoxy comp_osite
P c KT KJ =K] a, a,=a,
g/cm® J/(g'K)  W/(m'K) W/(m*K) (um/m)/K  (um/m)/K
1.6 1.0 4.62 0.72 0.02 22.5
a b K" E,/R B, B, =8,
mm? /s K m/m m/m
0.018 1 6.51 5722 0 0.44
To
°C
177

2. stress-strain relations including hygrothermal strains

Just like any other material, compasites deform when they absorb
moisture or when the temperature changes. In the linear theory the
resulting: nonmechanical strains are simply added to the mechanical
strains induced by the stress to obtain the total strain. In the following
discussion of hygrothermoelastic constitutive relations, the temperature
and the moisture concentration are uniform throughout the material
volume.

Consider a unidirectional composite in a reference state where tem-
perature is T, and ¢ = o; = 0. Next the composite is brought into a
final state where temperature T is different from T, and ¢ #0, o; # 0.
Figure 8.8 shows pictorially the two different states the composite is in.

To determine the resulting strain we assume that the material is
elastic; the response of the material does not depend on the history of
the input but only on the initial and final states. Since the order of
application of various changes is immaterial, we conceptually imagine
that temperature is changed first, followed by moisture absorption. The
application of stress is thus last, see Figure 8.8. Let us denote the
strains induced by the temperature change and moisture absorption by
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Figure 8.8 Decomposition of total strain into thermal, swelling
and mechanical strains.

e,T and e{’ , respectively. The mechanical strain due to o; is given by
S;;0;- 1t should be noted that since the stress is applied at temperature T
and moisture concentration ¢, S;(T,c) is the compliance measured
under such condition. Thus, it will be different from S,-/-(To,c) which is
measured at (T,,c). By the same line of reasoning we see that e/ is
measured at (7,0; = 0) and e/ at (¢ =0, ¢; = 0). The final strain is the
sum of the foregoing three types of strains:

Here the nonmechanical strain e; is the sum of ] and e/,

e; = o +el (8.42)

Because of the transverse isotropy characteristic of unidirectional
composites, not all components of the nonmechanical strain are in-
dependent in the material symmetry axes. Specifically, we have
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el, = el =0

e] = el (8.43)
The resulting volumetric strain is

AV

Thus, unlike isotropic materials, composites do not allow determination

of nonmechanical linear strains from nonmechanical volumetric strain.

In general, e,»T and e{’ are nonlinear functions of T and c, respec-
tively. In the linear theory we are interested in, however, the thermal
expansion coefficient o; and the swelling coefficient §; can be used to
calculate ef and e, respectively. That s,

el = o (T-T,)
(8.45)
el = Bc

Thus, o; has the dimension K™! whereas §; has no dimension. Typical
values of these coefficients for a graphite/epoxy are given in Table 8.2.

Thermal expansion coefficients of other composites are listed in Table
8.3.

table 8.3
thermal expansion coefficients of typical unidirec-
tional composites

‘ o, a,
Type (um/m)/K (um/m)/K
T300/5208 0.02 22.5
B(4)/5505 6.1 30.3
AS/3501 —03 28.1
Scotchply 1002 8.6 22.1

Kevlar 49/Epoxy —4.0 79.0
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3. fabrication stresses

Determination of fabrication stresses in a composite laminate requires,
above all, some understanding of the fabrication process involved.
Therefore, we shall start this section with a brief description of a
typical fabrication process of polymer matrix composites.

Needless to say, fabrication of a composite laminate starts with fibers
and a viscous matrix resin. The fibers are first impregnated with the
resin and then wound with a backing sheet onto a mandrel in the form
of a tape. The tape is then heated slightly to make the resin hard yet
flexible enough to handle; the resin is B-staged. Thus the tape has all
the fibers in the same direction and is called the prepreg. The prepreg is
then cut into sheets and these sheets are laid up with fibers in various
directions to make a laminate. The laminate is putin a vacuum bag to
squeeze out the entrapped air and is slowly heated in an autoclave. As
the temperature increases, the epoxy softens again and flows until a
change in the internal structure starts to take place in the form of
entanglement of polymer molecules, i.e., crosslinking occurs. As a
result, free motion of polymer molecules is prohibited and the epoxy
begins to harden. At this point, usually around 270°F, a pressure in the
range of 80—100 psi is applied to drive out volatiles. The temperature is
further increased to 350°F and maintained there for 1—2 hours to finish
the cure. The temperature is then lowered to the room temperature and
the cured laminate is taken out of the autoclave. The typical cure
procedure just described is shown in Figure 8.9.

As the crosslinking takes place, the epoxy shrinks, i.e., chemical
shrinkage occurs. The resulting deformation of a unidirectional com-
posite in the transverse direction is much larger than in the longitudinal
direction. Therefore, within the laminate the deformation of one ply is
constrained by the other plies with different fiber orientations, and
hence residual stresses are built up in each ply. However, since most
crosslinking takes place at the highest temperature, called the cure tem-

* perature, the epoxy can be still viscous enough to allow complete relax-

ation of the residual stresses. Thus, the cure temperature can be taken
as the stress-free temperature. In reality, however, the stress-free tem-
perature will vary with the cure process employed because the property
change during cure is very much time-dependent. Yet, the cure temper-
ature can serve as the stress-free temperature as long as almost all cure
takes place at the cure temperature.
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Figure 8.9 A typical cure cycle for a graphite/epoxy
composite.

Now, consider, without loss of generality, a [0/90]; laminate being
cooled from the cure temperature to room temperature Suppose for a
moment that the O-degree plies and the 90-degree plies can deform
unconstrained by each other, Figure 8.10. For convenience, only one
O-degree ply.and one 90-degree ply are shown in the figure. As tempera-
ture is lowered, the O-degree ply deforms by eT while the 90-degree ply
undergoes a thermal strain e; in the same drrectlon Since e and e
are different from each other, there will be a geometrical mlsmatch
between the O-degree and 90-degree plies. In the actual {0/90], lam-
inate, however, such mismatch is not allowed. Therefore, residual
stresses aff and Gf are internally exerted to the O-degree and 90-degree
plies, respectively, to bring about the geometrical compatibility. The
final strain e"T of the laminate is called the laminate curing strain and
depends on e and ey as well as on the elastic moduli.

The procedure just described can be put in a more general form. To
this end, the constitutive relation for ply, Equation 8.41, is first con-

verted to , o : 3
0; = Ql](e/_e]T) (846)
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Figure 8.10 Build-up of residual stresses after fabrication.

Here the subscripts are associated with the laminate reference co-

ordinates.
Following the same procedure as in Chapter 6, we obtain

N; = A;€? + Bk, —NT

ij 1 [7iMd) AV
- (8.47)
M; = Bye} +Dyk,—MT

where the laminate moduli A, B;;, D;; are defined in Chapter 6. The
new quantities N7 and M7 are defined by

NI = fQ,,eIT dz

(8.48)

with the understanding that the integrations are from —h/2 to h/2.

- - Since N7 and-MF--have -the-same dimensions as N; and M;, respectively,

they are called the thermal stress resultant and thermal moment.
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The curing in-plane strain €27 and curing curvature kT result from
NT and MT in the absence of N; and M; and are given by

(8.49)

kT = BNT +8,MF

With e?T and k,-T thus determined, Equation 8.47 can be rewritten as

N;y = Ay(ef —e0T) + B (ki —k])

{

(8.50)
Mi = B,’/(G;-) —e;')T) +Dij(kj—k,T)

Through the thickness of the laminate, the curing strain €/ is

given by

el = ej-’T+zk,T (8.51)

1

The residual stress ‘0{2 at z is then obtained from.Equation 8.46 by
substituting €/ for e;.

The corresponding residual strain ef is thus
R = e —ef | (8.53)

Since €T is the strain in the absence of N; and M;, the strain €}/ due
to NV; and M; is given by

P R — (8.54)

I

Thus Equation 8.46 can be written as

% = 0D (8.55)

R
Q€ + ]

Equation 8.55 indicates that the stress at a point within the laminate is
the sum of the stress caused by N; and M;, and the residual stress.

hygrothermal behavior 349

4. residual stresses resulting from environmental change

In the preceding section the moisture concentration was zero. However,
when a laminate absorbs moisture, the resulting swelling strain must be
added to the thermal strain. The equations derived in the preceding
section are still valid if we substitute e; for e/ and if we use the stiffness
at (7,¢c), Qi(7,c), instead of Q;;(7,0). The superscript T is now replaced
by N and the equations for the nonmechanical in-plane strain and
curvature are

e = a,-/-Nj’-V +[3,-,M,’-V
(8.56)
kY o= BNV + &, MY
where
N = fQi].(T,c)el-dz = fQi,-(T.C)edeZ + fQii(T,c)e]Hdz
(8.57)

My = fQii(T,c)ejzdz =fQ,~,-(T,C)e,-Tzdz +f Qy(T.c)efl zdz

The evaluation of the integrals in Equation 8.57 is much simpler if ¢
is uniform throughout the thickness. As pointed out earlier, the temper- -
ature reaches equilibrium almost instantaneously as compared to the
moisture. In case of a uniform temperature and moisture distribution,
both e/-T and €7 are uniform in each ply and their variation from ply to
ply is only due to the change of the fiber direction. Furthermore, a
reduction of Equation 8.57 is possible if we use the equivalent stress
that would produce the nonmechanical strain,

o = Qe ‘ (8.58)
In the material symmetry axes of each ply, Ecjuation 8.58 reduces to

o',,tv = Qxxex +Qxyey

0 = Qe + 0,0, (8.59)

o =0
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Note that Equation 8.59 does not change from ply to ply. For the ply
with 6 orientation, see Figure 8.11, the components of the equivalent

stress are given by (see Table 2.2)

oY = 7 + gV cos20

o = p¥ —q" cos26 (8.60)
oy = 4" sin26
where
P SN ) =20 + 0, 6 + 20, +0,)
(8.61)
" = 2@ =) =20~ Oy e + (2, — Q)¢

Figure 8.12 shaws ply-to-ply variations of the nonmechanical stresses in
Equation 8.60.

<

Substituting Equation 8.60 into Equation
8.57, we have the nonmechanical stress re-
sultants as

—_—

j&x N1¥=pNh+qNV1A
/
/ N = PV h—g" v, (8.62)
Figure 8.11 Coordinates
for a typical ply orienta- N16V = qN Via

tion from the laminate

axes 1-2. Similarly, the nonmechanical moments can be

written as

S
I
<
=z
-
®

(8.63)

X
o
I
<Q
S
o
LY
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z The V’s in Equations 8.62 and 8.63
have been defined in Equations 6.79
through 6.82. Note that p"V does not
— ' contribute at all to MY .

5 For symmetric laminates, we have

g
— MY = B;=0 (8.64)
" =h If the expansion coefficients, Equa-

tion 8.45, can be used, the in-plane

Figure 8.12 Ply-to-ply varia- strain ¢ is given by
tions of nonmechanical stresses.
The average stress is the non-

mechanical stress resultant. The e? = 0‘(,) (T_To) + ﬁ? 4 (8.65)
laminate and the expansional
strains are assumed to be sym- where

metric; otherwise, nonmechanical - |
moments will be induced.

B = a; [Ouby dz

t is interesting to note that, even when the expansion coefficients of
unidirectional .composite are independent of 7T and c, such is not the
case with the expansion coeff1c1ents of laminate, of and 7, because Q;;
depends on T and ¢. When e and e are not proportlonal to (T—T, )
and ¢, of and Bf in Equatlon 8.66 can be regarded as the instantaneous
expansion coefficients because the change of Q;; with T and ¢ can be
neglected when compared with that of ¢;. ~
Equations 8.56 and 8.57 show that e? = k¥ = 0 if ¢; = O for each
ply. Since the residual stress is given by (see Equation 8.52)

of = Qy () —¢)

where

eV = e +zkY (8.68)

- the condition of zero nonmechanical strain e; = 0 in each constituent
ply renders laminates free of residual stresses.
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For graphitc/epoxy laminates o, and 8, are negligible and hence, the
condition of zero residual stress is given by

T L H =
e, +ej =0 (8.69)
Substituting Equations 8.39 and 8.45 into Equation 8.69, we derive a
relation between (T—T,) and ¢ so that there is no residual stress. The
result is

T,

o ay
Equation 8.70 is shown graphically in Figure 8.13 for a graphite/epoxy

laminate whose properties are given in Table 8.2. Note that the non-

mechanical strain e, is positive in the region to the right of the line and

is negative to the left of the line.

200

150+

100

TEMPERATURE (°C)
‘o
Q
T

0 | | |
0O 20 40 60 80 100

RELATIVE HUMIOITY (%)

Figure 8.13 Ambient temperature and relative
humidity required for a graphite/epoxy composite
to be free of residual stresses.

The swelling coefficient §; can also be obtained from a moisture
absorption test of a unidirectional composite of thickness 2 subjected
to a relative humidity ¢ on both sides. The resulting moisture dis-
tribution is given by Equation 8.30. The nonmechanical stress resultant

r=a (ﬁ%)b By (©.70)
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due to swelling is obtained from Equation 8.57 as

N = [ouef dz= [0, cdz
(8.71)
= hQy;c

where the last equality follows from the assumption that Q;; is in-
dependent of c. For the unidirectional composite, we have

o = .}l_lQ;j‘ (8.72)

Therefore, the laminate swelling strain becomes

e,?” = B¢ (8.73)
Thus B; can be determined by measuring e?” and ¢ during a moisture
absorption test of a unidirectional composite. ]

The nonmechanical curvature k¥ can be translated into the non-
mechanical out-of-plane displacement w” by using the curvature-
displacement relations, Equation 5.9. To this end we take the laminate
in Figure 8.2 to be a rectangular plate as shown in Figure 8.14. The
dimensions a and b are much larger than the thickness 2 so that one-
dimensional diffusion through the thickness is still applicable. The solu-
tion to Equation 5.9 is

wh = "lj(kﬁv X3+ kY x, +kYxix) + byx+ by xyt by
. (8.74)

The integration constants b;, b,, b; are to be determined from the
boundary conditions. For example, referring to Figure 8.14, we assume
that the three conrners represented by (0,0), (a,0) and (0, b) rest on a
flat surface; i.e., -

w™ = 0 at (0,0), (a,0) and (0,b) (8.75)
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To satisfy the boundary condition 8.75, the constants must be chosen
as

1
by = Sk a

b, = %kzzvb (8.76)
b3 =0

Therefore, the final displacement is

wN = —é—k’," (a—x))x,+ -;-kfz"(b —xz)xz—%kg’ xx, (8.77)
Thus, the effect of hygrothermal deformation can be easily seen from
the out-of-plane displacement wh.

Equation 8.74 is valid as long as w" is not too large so that the
assumptions of the linear theory are applicable. Thus this equation
should be used only for those plates that do not have too large a
width-to-thickness ratio.

X

b

(6)

Figure 8.14 Out-of-plane deflection of an
unsymmetric, rectangular laminate.
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5. unsymmetric cross-ply laminates

Unsymmetric cross-ply laminates are frequently used to show the effect

of hygrothermal strains. Consider a rectangular [0/90] ; laminate

whose dimensions are the same as those in Figure 8.14. Further, we
- assume- that the -temperature-7 and- the moisture concentration ¢ are

uniform throughout the laminate. The stiffnesses of this laminate have

been derived in Sections 4.4 and 6.4. Thus, only nonmechanical stress

resultants and moments need to be calculated in this section.

The nonmechanical stress resultants follow from Equation 8.62 as

k., h
N11V= E(Qxx_*_Qxy)ex +E(ny+Qxy)ey
NV = NV ‘ (8.78)

where, since T and c are uniform, the nonmechanical strains are given
by ‘

e, = o, (I-T,)+p,c

(8.79)
e, = o, (IT-T,)+B,¢
Similarly, the nonmechanical moments are
h2 h2 .
]M]lv= '—_8’ (Qxx — Oxy)ex ) (Qxy —0Q))) e
MYy = —my (8.80)
MN= 0

Therefore, there are only two unknowns e} and k’lv which must
satisfy (see Equations 8.47 and 6.100)

N}1V= (A11+A12)e?+311k11v
(8.81)
M11V= Bne?'*'(Dn_Dlz)kj,V
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The other strains and curvatures are

ey = ¢, e2 =0
(8.82)
Ky = =i, k¥=0 :
The solutions to Equation 8.81 are
O = (Du"Dlz)Nllv'_BuMq/
! (A4 +A12)(D11—D12)—B?1
(8.83)

(Alx "'Alz)M"lv _BnN[;v
(A4, +A12)(D11 "Dlz)“Bfl

Equation 8.83 can also be expressed in terms of the ply stiffness using
the results of Sections 4.4 and 6.4. Thus, the final equations are

& = U0k +70ux0yy = 0uxCsy + 0y Oy 801,

(0} +70xxQyy = Gy Ory + QuxOy —803,) ¢,

24 (8.84)
kjlv = v'h—a(Qxeyy—sz)(ex_ey) B
where
Q0 = Q2 +140,,0,, + 0%, — 1602, (8.85)

The residual stresses in the material symmetry axes of each ply are
the same in the O-degree and 90-degree plies. They are given by Equa-
tions 8.67 and 8.68 as

o = 0., (% —e, +IzIKY) + Qyy (65 —e, — F11.28)
(8.86)

oF = 0y (& —e +1zIKY)+ Q) (€5 —e, — IzIKY)

Note that |z] is the distance from the mid surface to a point of interest.
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As expected, if e, = e, kY vanishes and €9 = e,. Consequently, -
there are no residual stresses in the plies. '

For a rectangular plate shown in Figure 8.12, the out-of-plane dis-
placement is given by Equation 8.77. However, since k16v = 0, we have

N =

w kjlv [(@—x)) x - (b'*xz)le (8.87)

1
2

Equation 8.87 describes an anticlastic surface. The displacement wV
attains different maximum magnitudes depending on a and b. That is,

wV _ 1w, /a\? a :
WV = Elk1|<5)‘ at <5,0> ifa>b,

2:k,|<2 at (0.5) ifa<e

6. antisymmetric angle-ply laminates

(8.88)

Just like unsymmetric cross-ply laminates, antisymmetric angle-ply
laminates are also susceptible to nonmechanical warping. The simplest
example is that of a rectangular [—6/0]; laminate. Again, its dimen-
sions are as shown in Figure 8.14, and 7 and c are uniform throughout
the laminate. For the stiffnesses of this laminate we refer to Sections
4.5 and 6.5. ‘

The nonmechanical stress resultants follow from Equation (8.62) as

NV = pVh+qVhcos20
NN = pNh—qVh cos26 (8.89)
NV =0

where p¥ and ¢V are given by Equation 8.61, and because of the
antisymmetry, M’lv and M’zv vanish and the only nonzero moment is

, |
My = L g sin20 (8.90)
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Therefore, Equation 8.47 with the superscript T replaced by /N becomes
NN — B 6k =A4,,65 +A4,,¢5
NQ’ _BzekQI:Alze? +4,,¢€ (8.91)
klsv = MI:/D“

The in-plane stiffnesses listed in Table 4.8 are repeated here:

Ay, = WU, + U, cos20 + U, cos4f)
Ayy = Uy — U, cos26 + U, cosdf) (8.92)
A, = WUy — Uj; cos48)

The remaining stiffnesses in Equation 8.91 are from Section 6.5:

2 2
By = "—(‘i sin 20 + U sin 46)

4\ 2
w(U* . .

326 = :(? Sin 29 - U3 sSin 49) (8.93)
i

Do = o (Us — U; cos46)

With all the stiffnesses known; the nonmechanical in-plane strains are

_ A22(Nllv—Bl6k,6v)_A12(N1'¥ —stk’Z)

e >
Ay1A432 — AT
(8.94)
0 = A“(N12V "Bzekjsv)"'Am(N}y _Blak}g)
z Ay14 “Afz
The remaining strains and curvatures are easily shown to vanish:
e =iy =Kky=0 (8.95)
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In the material symmetry axes of the 0-degree ply, the final non-
mechanical strains are -

¥ = m2eS +ned +mnky z
eﬁ,v = n?ed + m?e —mnkj(y z (8.96)
e = —2mned +2mned +(m? —n?)kV 2

where m = cosf and # = sinf.

The residual stresses are thus obtained from

R = 0 (N —e)+0, () —e,)

o = 0 (M —e)+0,,( —e) (8.97)
ok = 0, |

Finally, the nonmechanical displacement w” depends only on k’;’:
WV = —%k’é’ X% | (8.98)

Thus, the largest displacement of the plate in Figure 8.14 occurs at the
corner (@,b):

W | max =%|k’: lab (8.99)

7. effect of residual stress on failure

As we saw in Chapter 7, the strength ratios for a unidirectional com-
posite can be obtained by solving a quadratic equation in stress space or
in strain space. All material constants in F’s and G’s are known for a
given material including the assumed value for the interaction term.
Then, for a given state of stress or strain, the strength ratios R and R’
are the two roots of the appropriate quadratic equation. For the
strength ratios of a laminate, we must first establish the on-axis ply
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strain. Then the strength ratio can be calculated ply by ply.
If residual strains are to be included, we must redefine the strength
ratio based on the mechanical strain,

ey =Rel (8.100)

This ratio signifies the amount of applied strain that can be increased
before failure occurs. The strain which produces stresses in the plies is
the sum of the mechanical strain and the residual strain, as shown in
Equation 8.55 and Figure 8.15. Therefore, the failure criterion 7.26
becomes

Gii(ellyy + Ry (el + ef) + G,y +ef)=1 (8.101)

Substituting Equation 8.100 into Equation 8.101, we obtain the equa-
tion for the mechanical strength ratio as follows:

Gji(Rel +eR)(Re! +efy+GRM +eR)—1=0  (8.102)

or, in short,

aR? + bR +c=0 (8.103)

The positive roots are

R

1,
R b, [ <_b_> _g]ﬁ
2a 2a a
A comparison of Equation 8.102 with Equation 7.50 shows that, in
the presence of residual strains, the failure surface is simply dislocated
by the amount of the residual strains in the opposite direction. Such
translation of failure surface is schematically shown in Figure 8.16 for a
constituent ply in a laminate.
Since all plies of the laminate are made of the same material, the
on-axis free nonmechanical strain e; will remain the same for a given
temperature and moisture concentration. For a symmetric laminate, the

|
|
vl
+
—
—_—
NS
\<‘
|
Qo
-
=

(8.104)
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Figure 8.15 Relation between total strain of a laminate and ply strain. Total
strain in (¢) is based on as-cured plies in (z). The strengths of unidirectional
composites are measured from cured and expanded plies in (). So strength
analysis must be based on €, (4) and €; (,) shown in (b).

€2M

WITHOUT RES/IDUAL
STRESS

_

- WITH RESIDUAL STRESS

_€IR

Figure 8.16 Translation of failure surface caused by residual
stress in a constituent ply of a laminate. The residual stress
moves the failure surface by —e‘f. Note that the shape of the
failure surface in the strain space is not changed by the
residual stress. '
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nonmechanical ply strains are equal to ¢{ in the laminate axes, but the
on-axis nonmechanical ply strains depend on the ply orientations. So
for multidirectional laminates, there are as many different on-axis
residual strains as there are ply orientations. Figure 7.9 shows the
strength ratio for each ply of a laminate under a given loading condi-
tion. Note again that the strength ratios are based on mechanical strain;
as such, they will provide a measure of the margin of safety on how
much increase the mechanical strain can sustain before failure. Of
course, the residual strains must be included in Figure 7.9.

Up to now we have addressed the in-plane strength of a symmetric
laminate. For the flexural strength of a symmetric laminate, we face a
linear variation of mechanical strain across the thickness of the lam-

inate. Specifically, the mechanical strain due to the applied moment is

M = zk, (8.105)
Therefore, the equation for the mechanical strength ratios becomes
G;j(Rzk; + €} ) (Rzk; + eR )+ Gy(Rzk; + ef)—1=0  (8.106)

For a given k;, the positive root of this equation is the product of the
strength ratio R and the coordinate z. A higher z would mean a lower
strength ratio within each ply or ply group. Thus the outer surface of
each ply, having higher z, would be the location to calculate the
strength ratio.

8. effects of temperature and moisture
on properties of unidirectional composites

Polymers presently used in composites are susceptible to temperature
and moisture. Consequently, the transverse and shear properties of uni-
directional composites, which are very much affected by matrix proper-
ties, also degrade upon exposure to elevated temperature and upon
absorption of moisture. However, the change of longitudinal properties
in the same range of temperature and moisture variations is negligible
because of the excellent retention of mechanical properties by the
fibers.
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Figure 8.17 shows typical changes in moduli of AS/3501 caused by
temperature and moisture concentration. Similar changes in tensile and
shear strengths of the same material are shown in Figure 8.18. the
general features of these figures can be summed up as follows.

TENSILE MODULUS, GPo

o -
300 350 400 <450 (7 o5 10 15

MOISTURE CONC. %

Figure 8.17 Effects of temperature and moisture concen-
tration on tensile and shear moduli of AS/3501. (Data
from [3]).

TEMPERATURE, K

The longitudinal properties are not degraded by temperature and
moisture. This behavior is a manifestation of excellent resistance of the
graphite fiber to hygrothermal exposure.

The room temperature properties do not change much upon mois- -
ture absorption. However, this statement needs a qualification. Note
that the transverse strength Y suffers a significant loss at higher
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Figure 8.18 Effects of temperature and moisture concentra-
tion on tensile and shear strengths of AS/3501. (Data from {3]).

moisture concentrations while the transverse modulus E, does not.
Since the interfacial bond strength between fibers and matrix affects Y
but not £, we can conclude that the reduction in Y may be a result of
the weakening of the interfacial bond by absorbed moisture.

The most reduction in properties occurs when temperature and
moisture are combined. Consequently, poor structural performance of
unidirectional composites is expected in hot and humid environments.

Whereas hot and humid environments are detrimental to the matrix-
controlled properties of unidirectional composites, the same is not
necessarily true for laminated composites because in such environments
laminates can be free of residual stress or may even benefit from
residual stress. For example, consider a [0/90], laminate subjected to a
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tensile load in the O-degree direction. After fabrication the residual
stress 0, in the 90-degree ply is tensile. However, as temperature and
moisture concentration increase, o, will decrease and may become
compressive. Thus, even though the transverse strength Y decreases, the
90-degree ply may fail at higher applied load. The net effect can be

predicted using pertinent property data in conjunction with Equation
8.102.

9. sample problems

a. A 1-mm thick [0/+45/90], graphite/epoxy laminate is exposed on
both sides to air at a temperature of 75°C and 90 percent relative
humidity. The initial moisture content is 0.5 percent. Estimate the time
required to reach one percent moisture content. Use the approximate
equation for time sufficiently large.

In Equation 8.34 the following variables are known:

¢ = 001, ¢, =0.005

(8.107)
h = |1 mm

The equilibrium moisture concentration at 90 percent relative humidity
is obtained from Equation 8.39. Since a = 0.018 for the graphlte/epoxy
as listed in Table 8.2, we have

E B 90 -

ol = 0018 xw—oomz o o (8.108)

Next, the diffusion coefficient at 75°C follows from Equation 8.40.
Again, the appropriate constants are taken from Table 8.2. The result is

KH = 6.51 X exp (—%) =4.706 X 107" mm?/s (8.109)

Therefore, the time required is

2 72 c—c¢,
= 4 __ — (] ——=
t 7r2KH In[g ( coe - CO>]

= 22.8h

(8.110)
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b. Determine the in-plane thermal expansion coefficients and the
residual stresses for a [0/£45/90]; T300/5208 laminate at room tem-
perature (= 22°C). The stress-free temperature is the cure temperature,
and use the properties in Table 8.2.

The in-plane stiffnesses of this laminate are given in Section 4.6. The
ply nonmechanical strains are

e 0.02 AT pm/m, e, = 22.5 AT pm/m (8.111)

X

where

AT 295 —450 =—155K (8.112)

The corresponding equivalent stresses follow from Equation 8.59 as

of = 68.89 ATkPa, o7 =232.8 AT kPa

(8.113)
' osT = 0 o
These stresses in turn yield

T 150.8 AT kPa, qT =—81.94 AT kPa

p
(8.114)
T =0

The integrals of the trigonometric functions all vanish. Therefore, the
nonmechanical stress resultants are simply given by

Nl = NI =pTh NE=0 (8.115)
Consequently, the thermal in-plane strains are

ez;T'= 9T = l_;_'pr (8.116)

Using the values of £ and v in Equation 4.63, we finally obtain

- e9T= &7 = 1.52 AT pm/m
(8.117)

&= 0
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The corresponding in-plane thermal expansion coefficients are

o

of = 1.52 (um/m)/K
: : (8.118)
% = 0

The residual stresses in each ply are obtained from Equation 8.52.
Since we have '

e2T= e;T = e‘{T, egT =0 (8.119)

for each ply, the residual stresses do not change from ply to ply. The
final results are

ok = 213 ATkPa=-33.0MPa
o = —213ATkPa= 33.0MPa L (8.120)
of = 0

c. Determine the nonmechanical in-plane strains and curvatures of a
[05/905 ]+ T300/5208 laminate at room temperature and 50% relative
humidity. Use the properties in Table 8.2. The thickness of the
laminate is 2 mm.

The equilibrium moisture content at 50% relative humidity is 0.009.
Since the temperature difference is —155 K, the nonmechanical strains
are

e, = 0.02 X(—155)+0X9=-3.1um/m
(8.121)
e, = 225 X (—155)+ 440X 9 = 472.5 um/m

The nonmechanical stress resultants are determined by Equation
8.78:

1l

NY = NV =5.682 kN/m
(8.122)

%
i
(=]
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On the other hand, Equation 8.80 gives the nonmechanical moments as

MV = —MN = 2.036 N

(8.123)
My =0

Finally, using the moduli in Section 6.4, we obtain the nonmechanical
strains and curvatures as follows:

(8.124)

0
€

kY

e =107 pm/m, € =0

—kY =-0.180 m™, k¥ =0

Note that these answers can be obtained directly from Equation 8.84.
d. A 100 mm X 100 mm plate is made of [—455 /4551 T300/5208.
Determine the maximum out-of-plane deflection at room temperature
and 50% relative humidity. Use the results of the preceding problem.
The nonmechanical stresses corresponding to the nonmechanical
strains calculated in the preceding problem are

oY =0.805MPa, o) = 4.88 MPa

(8.125)
of =0
These stresses in turn yield
p¥ = 2.84 MPa, ¢N =-2.04MPa
(8.126)
o= 0

Using 0 = 45° in Equations 8.89 and 8.90, we calculate the nonvanish-
ing components of NV and MY as

NV = NN =5.68 kN/m
(8.127)
MY =-2.04N
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The bending modulus Dg ¢ is given in Section 6.5 as
Dgg =31 Nm (8.128)
Therefore, the nonmechanical curvature k¥ becomes

—2.04 .
kY = 37— 0-066m™ ©(8.129)

into Equation 8.99 and noting that e = b = 100 mm:

WV =0.33 mm © (8.130)

e. A [0/+45/90], AS/3501 laminate is subjected to the stress resul-
tants N, = 30 kKN/m, N, = 20 kN/m at room temperature immediately
after fabrication. What is the strength ratio for each ply? If there were
no residual stresses, what would be the strength ratios? Use the thermal
properties in Table 8.2.

From Problem b the residual strains in the material symmetry co-
ordinates are seen to be the same in all plies. Specifically, they are

e =egT —e, = —294.5 um/m

R =0T —¢

, (8.131)
y "y y = 4107.5 pm/m

The in-plane moduli are obtained by substituting U,, U, and Ujs of
Table 3.6 into Equation 4.62:

E = 54.83 GPa,

(8.132)
v = 0.284
The mechanical laminate strains are
1 [Ny N, ‘
oM =_ (. —p_ %) =
€ I3 <h v p ) 443.6 pm/m
(8.133)

N. N
oM = 1_<_h_2 - -}7‘.> = 209.4 um/m

Note that we have used 2 = 1 mm.
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Using G;; in Table 7.3 we can calculate @, b and c in Equation 8.103

for each ply: -

2 i 2
Gxxflgz +20xy€¥ Ely +ny€l)"’l +GSS€{S'W

=
b =GyeM +G, el +2 (G e R +G,, (¥ €}
+eR M) +G, el e +Gef R ] (8.134)
¢ = —1+G, ek +2G,, &8 & +G, ek +Gek”
+ G, R + G,
The mechanical strains are:
O-degree ply
M= oM M =M M =0  (8.135)
90-degree ply
eM =63M, ef,’ =e€M, e’S" =0 (8-136)
45-degree ply
e = ¢ =%(e‘;M +eg‘h), M =—(eM —edM)  (8.137)
The final results are given below in a tabular form:
Ply a(107®)  5(107%) c(10™®) R R'
0-degree 145 57.60 —344.1 5.2 450
90-degree 1.46 89.88 —344.1 3.6 65.2
45-degree 1.53 69.70 —344.1 4.5 50.1
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In the absence of residual stresses, the results would be as follows:

Ply a(10®)  5(10™) c(107%) R R'
0-degree 1.45 44.80 —1000 150 459
90-degree 146 66.22 —1000 11.9 57.3
45-degree 1.53 55.50 —1000 132 495

The strength ratios to be used under the given state of stress are given
by R. Note that the strength ratios in tension, R, are substantially
reduced by the residual stresses for all plies. However, in compression
the strength ratios, R’, can increase in the presence of residual stresses.

10. conclusions

As polymers undergo both dimensional and property changes under the
change of environment, so do composite materials utilizing polymers as
matrix phase. For most structural composites, fibers are fairly in-
sensitive to environmental changes. Thus, the environmental suscepti-
bility of composites is mainly through the matrix phase.

While the thermal diffusion through composites can be described by -
the Fourier equation, the Fick’s equation can be used to handle the
moisture diffusion. Under most circumstances, these two equations can
be used separately because the thermal diffusion takes place at a rate in
the order of 108 times faster than the moisture diffusion.

Dimensional changes resulting from environmental changes are
described by a modified set of linear equations. That is, the total strain
minus the nonmechanical strain is linearly related to the stress. The
nonmechanical strain is measured from a stress-free reference state and
the elastic moduli to be used are taken at the final environmental
condition. The theory is based on the assumption of elastic behavior;
however, a nonlinear dependence of the nonmechanical strains on the
temperature change and moisture concentration is allowed.

The anisotropy of unidirectional composites also manifests itself in’
the hygrothermal behavior. Because of the directional dependence of
hygrothermal expansion, residual stresses are induced in composite
laminates. These residual stresses can be calculated using the laminated
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plate theory developed in the preceding sections. Since the transverse
residual stresses in plies after fabrication are tensile while the residual
stresses induced by moisture absorption are compressive, a combination
of temperature and moisture concentration can be chosen to render a
laminate free of residual stresses.

The residual stresses in a laminate change the ply failure stresses; the
ply strength ratios depend on the residual stresses. Depending on the
direction of loading, the residual stresses can be beneficial or deleteri-
ous. Also, the transverse residual stresses are usually much lower and
even compressive in a hostile environment such as high temperature and
high humidity. Therefore, although material properties are degraded in
the hostile environment, such environment is rather beneficial from the
viewpoint of residual stresses. The true effect of residual stresses can be
assessed only by analyzing the overall performance of the composite
under a given service condition.

In this chapter we have presented an analysis method for the hygro-
thermal behavior of composite laminates. By necessity a few simplify-
ing assumptions had to be introduced. Any improvement over the
present theory quickly brings complexity and the necessity for more
information about the material behavior. In the absense of such addi-
tional information, the present theory can still be used to analyze the
average behavior of composite laminates.
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11. homework problems

a. In a moisture absorption test a dry 10 mm X 10 mm glass/epoxy
laminate was immersed in water. The laminate was 2-mm thick, and
the equilibrium moisture content was 2%. The additional moisture
contents measured at three different times were as follows:

T =02%hatt= 16h
=04%att= 64h

= 0.6%att =144 h

What is the diffusion coefficient of the glass/epoxy laminate?

b. In one-dimensional diffusion through the thickness it takes 1 month
for a 1-mm thick graphite/epoxy laminate to reach 90% of the equi-
librium ‘moisture content at 22°C. How long does it take for a
10-mm thick graphite/epoxy laminate to reach the same moisture
content at 75°C?

c. For a graphite/epoxy laminate with the properties of Table 8.2,
determine the change in volume when the temperature is increased
by 100 K and the equilibrium moisture concentration by 1 percent.

d. Show that for a [—0/6], laminate the inplane nonmechanical strains
are given by

o —h[.ll(A22 _Al2)+J2(A12 +A22)C0820]

A11A422 — A7,
eo _h[Jl(All _AIQ)—J2(A11 +A12)00820]
9 =

Ay14z, ’”Afz

where
Ji = Up, +Uyq, + U,p,

J, = Uyp, +q,. (U, — U, +2U,)
Pe = Lee, + )
e 2 X ey

1
2

de (e, —ey)
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In the above equations, 7 is the thickness and the U’s are functions
of Q;; defined in Section 3.1.

e. A unidirectional composite has the following properties:

E, 910 MPa, E, 7.24 MPa

v, = 0.36, E, = 1.81 MPa

X

When the composite is immersed in benzene until an equilibrium
state is reached, the swelling strains are

e, =0.02, e, =0.75, e, =0

Now a [—6/6], laminate is made of the composite just described.
What is the angle 8 which gives a minimum swelling strain ¢ when
the laminate is subjected to the same environment? Is the minimum
swelling strain positive or negative?

f. Determine the residual stresses in a [0/90], AS/3501 laminate when
the laminate is subjected to an 80% relative humidity at 30°C. Also,
determine the strength ratios when a stress resultant NV, of 10 kN/m
is applied. Assume the laminate is in an equilibrium state.

g Show that the residual stresses in [0/£60]; laminate are the same as
those in [0/ £45/90), and [0/90), laminates. ‘
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nomenclature

C = Specific heat, in J/g.K
¢ = Specific moisture concentration, in g/g
¢ = Moisture content or average specific moisture concentration

= Nonmechanical strain of a ply
ey = Nonmechanical in-plane strain of a laminate

E, = Activation energy, in J/mole

H = Moisture concentration, in g/m?

K# = Moisture diffusion coefficient in the transverse direction
(= K4 =Kl)

l\,’;’ = Pre-exponential factor for K", inm?/s

KT = Thermal conductivity, in w/(m*K)

‘1,‘71 = Heat flux, in w/m? ;

g = Moisture flux, in g/(m? -s)

R = Gas constant [= 8.319 J/(mole*K)]

R.R'" = Strength ratios

T = Temperature, in K

t = Time

T, = Stress-free temperature

o; = Thermal expansion coefficient, in (um/m)/K

3
B; = Swelling coefficient
Sub ,i = Partial differentiation with respect to x;,
Sub o Initial equilibrium
Sub oo Final equilibrium
Sup H = Hygro- (moisture-related)
Sup M = Mechanical
Sup N = Nonmechanical
Sup R = Residual
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chapter 9
micromechanics

Elastic moduli and hygrothermal expansion coefficients of unidirec-
tional composites can be predicted from the properties and volume
fractions of the constituents. Easy-to-use formulas are presented for
such predictions. The strength prediction is difficult, and is limited to
specific composite materials -under specific failure modes. A general
-micromechanics theory comparable to the elastic moduli is not avail-
able at this time.
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1. general remarks

In the preceding chapters unidirectional composites have been treated
as anisotropic, in particular, transversely isotropic, homogeneous mate-
rial. Upon magnification, however, these composites reveal a hetero-
geneous structure — fibers embedded in matrix. A typical cross section
of a Kevlar/epoxy composite is shown in Figure 9.1. In the figure the
Kevlar fibers are approximately 12 um in diameter. Typical properties
of some fibers are listed in Table 9.1.

In structural composites fibers are
stiff and strong, and serve as the load-
bearing constituent. On the other hand,
matrix is soft and weak, and its direct
load bearing is negligible. However, the
role of matrix is very important for the
structural integrity - of composites;
matrix protects fibers from hostile envi-

Figure 9.1 Cross section of
a Kevlar/epoxy composite.
Fibers are 12 um in diameter.

broken fibers.

Micromechanics is a study of mechan-
ical properties of unidirectional com-
posites in terms of those of constituent
materials. In particular, the properties to be discussed are elastic
moduli, hygrothermal expansion coefficients and strengths.

ronments and localizes the effect of .

table 9.1
typical fiber properties
Fiber - Diameter Density Modulus . Strength

: um g/cm3 GPa GPa
Graphite

(T300, AS) 7 1.75 230 2.80
Boron

(4-mil) 100 2.6 410 345
Glass

(E) 16 2.6 72 345
Kevlar

(49) 12 1.44 120 3.62

micromechanics 379

In discussing composite properties it is important to define a volume
element which is small enough to show the microscopic structural
details, yet large enough to represent the overall behavior of the com-
posite. Such a volume element is called the representative volume
element. A simple representative volume element can consist of a fiber
embedded in a matrix block.

Once a representative volume element is chosen, proper boundary
conditions are prescribed. Ideally, these boundary conditions must
represent the in situ states of stress and strain within the composite.
That is, the prescribed boundary conditions must be the same as those
if the representative volume element were actually in the composite.

Finally, a prediction of composite properties follows from the solu-
tion of the foregoing boundary value problem. Although the procedure
involved is conceptually simple, the actual solution is rather difficult.
Consequently, many assumptions and approximations have been intro-
duced, and therefore, various solutions are available. In this chapter,
however, we limit our discussion to the simplest model without loss of
generality in the procedures involved. ' ‘

2. density of composite

Consider a composite of mass M and volume V, schematically shown in
Figure 9.2. Here V is the volume of a representative volume element.
Since the composite is made of fibers and matrix, the mass M is the sum
of the total mass M, of fibers and the mass M, of matrix:

M=M;+M, (9.1)

- Equation 9.1 s valid regardless-of voids which may be-present.- How-

ever, the composite volume V includes the volume V, of voids so that

V=Vv,+V, +V, - (9.2) -

Dividing Equations 9.1 and 9.2 by M and JV, respectively, leads to the
following relations for the mass fractions and volume fractions:

me +m, =1 (9.3)

Vi F v v, =1 (9.4)
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MATRIX
Vm, Mm

FIBERS
., My

Figure 9.2 A representative volume
element. The total volume and mass
of each constituent are denoted by V
and M, respectively. The subscripts m
and f stand for matrix and fiber,
respectively.

In this section the subscripts f, m, v are exclusively used to denote
fiber. matrix and void, respectively. Thus these subscripts do not follow
the rules ol index notation.

The composite density p follows from Equations 9.1 and 9.2 as

OV + bm Vi)
pr¥s me ) gt o (9.5)

, =M
|4
In terms of mass fractions, p becomes

p = ! (9.6)
melpg+ My [P +v,[p

Equation (9.6) is frequently used to determine the void fraction

m m
f m

The mass fraction of fibers can be measured by removing the matrix.
In the case of glass/epoxy composites the matrix can be burnt put
without affecting the glass fibers. As for boron/epoxy and graphlte/
epoxy composites, acids are usually used to dissolve the matnx. Once
m. is thus determined, the mass fraction m,, of matrix simply follows

from Equation 9.3.

0.7

et et e
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3. composite stresses and strains

In Equation 9.5 the composite density p is seen to be equal to the
densitics of the constituents averaged over the composite volume. The
composite stresses and composite strains are defined similarly.

Suppose the stress field in the representative element is g;. The com-
posite stress 0, is defined by

,:—!— a,~dV=l fo,-dV+f o,-dV+f o;dV
V vV |4 Ve Vv V.

m v

Q|

(9.8)

We now introduce the volume-average stresses 5/«,- and ¢
and matrix, respectively, »

i in the fibers

- 1 - 1
5i=— [ o;av,s .=——f o; dV (9.9)
Ji V/ fol mi Vm v, i

Since no stress is_transmitted_in the voids, i.e., ;.= 0 within V,
Equation 9.8 can be written as

Ej = Vf Efl + Vi a:",”' (9.10)

Equation 9.10 thus gives the composite stress o; in terms of the average
constituent stresses 0,; and 0,,,; ' C

Similarly to the composite stress, the composite strain is defined as
the volume-average strain, and is obtained as

+Vv €yi (9.11)

€ = V€ F Vi €mi
Unlike the stress, the strain in voids does not vanish. The void strain is
defined in terms of the boundary displacements of the voids. However,
since the void fraction is usually negligible, i.e. less than 1%, in com-
posites of acceptable quality, we neglect the last term on the right-hand
side. Thus, in the following discussions we shall use

G, = V/' Efl+ Vin (:‘mi

(9.12)

with the understanding that (vf +v,, ) is unity.
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Note that Equations 9.10 and 9.11 simply follow from the defini-
tions of the composite stress and strain that the composite variables are
the volume averages. Thus, these equations are valid regardless of the
material behavior.

Dctermination of the composite stress and strain requires the
knowledge of the stress and strain fields within composite. However, we
shall show that they can be determined directly from the boundary
tractions and boundary displacements.

Consider a representative volume element in the form of a rectangu-
lar prism, as shown in Figure 9.3. The fibers in the element are per-
fectly bonded to the matrix. Suppose a stress BJX is applied on the
boundariesat x =0 and L, .

- - — — — —

L/ X 2 3
(a)
it ! %
JUARAITAZAE ) B
ﬂ \g
) (-
/ .
/ 1~ -~ (4444444444484 444L
Z
6) 0 * lc)

A,: BOUNDARY AT x =L,
Ay: BOUNDAR AT y = Ly

Mtz-.-.-.—.
!nqz-.-.-.

(d)

Figure 9.3 Force and displacement boundary conditions
applied to a representative volume element. Initial shapes
are indicated by broken lines in (), (c¢) and (d).
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By definition the composite stress Ex is given by

— 1
G o= 1 o,dA dx (9.13)
T L L,L, ﬁ,fm) x

where A(x) is the cross section at x normal to the x-axis. Of course, the
area of 4(x) is constant and equal to L, L. The equilibrium condition
requires that the resultant of g, be equal to the resultant of the applied

stress 8;,
f 0,dA = f 0, dA (9.14)
i el A(X) - - - Ao .

Substituting Equation 9.14 into Equation 9.13, we can show that o, is
equal to the average applied stress, -

— 1 ~
= g,.dA
T L, ./; x (9:13)

1

Similarly, the other stress components o, and G are equal to the
respective average applied stresses,

- 1 f ~
g, = a,dA
d LyLs A, d

| (9.16)
0, = L2VIL3 _//; ?J'sdAv
In case when the applied stresses are uniform, i.e.,
G, = 02 ond,
G, = 09 ond, (9.17)
0, = 6% onA,
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4. elastic moduli of composite

In a state of plane stress which is applicable to thin laminates, the
required composite stress-strain relations are

€ =5,5Gi=126) (9.27)
1/E, —v, /E, 0
Sy = | —ve/Ex 1/E, 0
0 0 1/E,

Thus our goal is to determine the four components of the composite
compliance matrix S;; in terms of the structural details of the com-
posite and the compliance matrices of the constituents.

There is a total of 18 variables- — 3 components each of stress and
strain for the fiber, matrix, and composite, respectively. Since we are
seeking 3 stress-strain relations of Equation 9.27, we need 15 equations
relating those 18 variables. Six of these required equations are provided
from the definitions of the composite stress and strain, Equations 9.10
and 9.12. Six additional equations are the constitutive relations of the
constituents,

gfi = Sgij afi’ €mi = Smij ‘_’mj (9.28)
where
0 0 l/Gf
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1/E,, Vi [Ep 0
Smii = Vi /Em I/Em 0 7 (929)
0 0 G,

Yet we need three more equations which must be chosen so that (1)
stresses are in equilibrium, (2) strains are related to stresses through
constitutive equations, (3) strains are related to displacements, and (4)
the given boundary conditions are satisfied. However, finding the stress
and strain fields which satisfy all four conditions described above in a
realistic representative volume element is rather complicated. There-
fore, here we shall choose a simple representative volume element and
simple boundary conditions so that the above conditions are easily
satisfied.

Consider a composite laminate with fibers in the x direction, Figure
9.4. The representative volume element of this composite is chosen to
be a fiber embedded in a matrix plate. The fiber is assumed to have a
rectangular cross section with the same thickness as the matrix plate.
Therefore, the width ratio wf/(wf +w, ) is chosen to be the same as
the fiber volume fraction of the composite itself,

Wm
2 -
“ 7= Z
Wm
2 —
8 c «x

Figure 9.4 A simple representative volume
element. A perfect bond is assumed between
the fiber and the matrix.
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where of are constants, the composite stresses become equal to the
applied stresses. That is,

5, = o? (9.18)

I

Referring back to the representative volume element of Figure 9.3,
we now show that the composite strains are related to the average
relative boundary displacements. First, consider the composite strain Ex
which, for the representative volume element, is given by

- 1
€, = —— €. dx dA (9.19)
x LyLyL, ./,z‘i(x) ,/;., _x 3

At each point in the cross section A(x), we evaluate the integral of €,
over the length L, to obtain

f exdx=f (Qu/ox)dx =u (9.20)
L, ’ L, :

Here, % is the value of u at x = L, and we have assumed % = 0 at x = 0.
Of course, % depends on y and z and represents the displacement of the
boundary at x = L,. Substitution of Equation 9.20 into Equation 9.19
thus results in an equation relating the composite strain to the average
boundary displacement,

= dA 9.21)
€, I LL A, i (

The remaining strains can be easily found to be

- 1 1 ~
€, = — v dA
» T L L, fA

- 11 ~
€. = — v, dA
* L, L2L3 ,/;1 ’

(9.22)
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Note that ¥ in the equation for Ey is the displacement of A, whereas vy
in the equation for €, is the displacement of 4, in the y direction.
If the boundary displacements are uniform, i.e.,

~ o)

€L, on4,

v o= €, L, ond, . (9.23)

~

vg=¢€7 L, onA,

where €? are constants, the composite strains reduce to
€ =€ (9.24)

Equations 9.15, 9.16, 9.21, and 9.22 allow us to determine the com-
posite stresses and composite strains directly from the boundary condi-
tions without knowing the stress and strain distributions within the
representative volume element. These results are very helpful in tests
where the applied loads and relative displacements are directly mea-
sured. Equations 9.18 and 9.24 are frequently used in the derivation of
composite moduli. v

The conservation of energy requires that the strain energy stored.
within the representative volume element be equal to the work done
by the applied stresses,

fo,-e,-dV=f ?x'xTidA+f FyT/’dA+f 37, da
v A, A, A,

(9.25)

If either the applied stresses or the boundary displacements are uni-
form (see Equations 9.17 and 9.23), then the strain energy density
within the representative volume element is simply given by

]l -
w=§7/- . 0;€; dV=iOi€,' (9.26)

Thus the strain energy density of composite is the same in form as that
of a homogeneous material.
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Suppose boundary 4B is fixed and boundary CD is given a uniform
displacement BC €¢. Boundaries AD and BC are free. Thus the imposed
boundary conditions are

u = BCe onCD

=0 on AB

, (9.30)
G, =0 on AD and BC
o, = 0 on all boundaries
Using Equations 9.15—18 and 9.21—24, we easily find that

€ = €x = €mx =€
F, = Op = Opy =0 (9.31)
0, = Of = 0, =0

Equation 9.31 can now be used to determine the composite stress-strain
relations. From Equations 9.10 and 9.23 we see that

O'x = Vfa:fx +Vm me":(VfEf"'VmEm)Ex (9.32)
Therefore, the longitudinal Young’s modulus £, becomes
E, = vE;+vpEp \ (9.33)

Next, the transverse composite strain Ey is related to the longitudinal
composite strain €, by

eTy = vff_fy +v,, (:Tmy =—(vpy tvp, v, )€, (9.34)

The longitudinal Poisson’s ratio is thus

Ve = v@rtvpvy (9.35)
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To determine the transverse Young’s modulus E,,, we apply the fol-
lowing boundary conditions :

0, = 0 onABandCD

6}, = o) onADandBC (9.36)
g = 0 bn allbboundaries

s

Again, using Equations 9.15-18 and 9.21-24, and neglecting the shear
stresses on the fiber/matrix interface we find that

0y = Efx = Bmx =0
G, = Oy = Opy =0 3D
Es = a—fs = Ems =0

Therefore, the composite strain Ey is given by

m

&) +vmE <Vf+v”'>“ (9.38)
€ = v f Vy € = — 1t - Uy .
y 1ty m=-my Ef E |

* The resulting transverse Young’s modulus is obtained from

B N . (9.39)
E, Ef E'",

Finally, the boundary conditions for the determination of the shear
modulus are '

0, = 0 onABandCD
%, = 0 -onADandBC (9.40)
0, = 02 on all boundaries.
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The procedures to be followed next are similar to those for Ey. There-
fore, the shear modulus is given without derivation:

Y ) (9.41)
E;. Gf Gy

Equations 9.33, 9.35, 9.39 and 9.41 are called the rule-of-mixtures
equations for composite moduli.

The boundary conditions to be imposed on the representative
volume element must simulate the in situ state of stress as closely as
possible. When o7 was applied on boundaries AD and BC we assumed
no stress on boundaries AB and CD. However, such boundary condition
is not realistic because Efx is not the same as €, unless v,/E;=v,, [E,, .
The resulting difference in displacements cannot be sustained in actual
composites.

To remedy the foregoing contradiction, we modify the boundary

conditions 9.36 as follows:
% = C-BConCD

=0 on AB
(9.42)

Ey = 0 on AD and BC

o, = 0 on all boundaries

The constant C is to be determined from the condition g, = 0.
The application of Equations 9.15—18 and 9.21-24 allow the follow-
ing cquations:

€x = gfx = gm)r =C
0y, = Op = Opy =0 (9:43)
G, = G5 = Gy =0
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Combining Equation 9.28 with Equation 9.43 and recalling o, = 0, we
first obtain oy, and g, as .

a__ =VfEm—”mEfV E
/x VfEf + Vm Em m =y
(9.44)
— Yy Ef - VfEm -
Opy = ————"— V{0
mx VfEf + Vm Em 7y
Thus the transverse Young’s modulus Ey is obtained from
1oYW EmlEpt v EffEn — 20
(9.45)

The determination of C leads to the transverse Poisson’s ratio v,
because

c =- (9.46)

&h'i |‘§:
<o

It can be shown that v, determined from Equation 9.46 satisfies the

symmetry condition

Vy

E,

4
Yy (9.47)
E)’

The first two terms on the right-hand side of Equation 9.45 are the
same as Equation 9.39 based on a uniaxial state of average stress. The
third term represents the effect of lateral constraint imposed by the
strain compatibility and leads to a higher transverse modulus.

Equations 9.33 and 9.35 provide accurate predictions for the longi-
tudinal Young’s modulus and Poisson’s ratio. However, Equations 9.39
and 9.41 give lower values than experimentally observed for the trans-
verse Young’s modulus and shear modulus, respectively, as can be seen
in Figures 9.5 and 9.6 for a glass/epoxy composite. Equation 9.45
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Figure 9.5 Transverse modulus versus fiber
volume fraction for a glass/epoxy composite.
The solid lines represent Equation 9.49, and

the broken lines Equation 9.45. Equation 9.45
can be modified to include 17,,, and Equation
9.39 is represented by the soﬁd line with n, = 1.
The elastic moduli used are: Ef= 73.1 GPa, E,,
= 3.45 GPa, V= 0.22 and »,, = 0.35. (Data
from [1]).

yields a higher modulus than Equation 9.39. However, both predictions
are considerably lower than the data. A simplistic method of correcting
for such discrepancy is discussed in the next section.

5. modified rule-of-mixtures equations
for transverse and shear moduli .

In the preceding section the representative volume element consisted of
two plates of the same thickness, each representing a fiber and matrix,
respectively. However, in actual composites, fibers are completely
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Figure 9.6 Shear modulus versus fiber volume.
fraction for a glass/epoxy composite. The solid
lines represent Equation 9.49, and o, = 1
corresponds to Equation 9.41. The shear moduli
used are: Gf= 30.2 GPaand G, = 1.8 GPa.
(Data from™[2]).

surrounded by the matrix. Thus a more realistic representative volume
element will be a concentric cylinder as shown in Figure 9.7. Also, the
boundary conditions should be changed to simulate the in situ state of
stress the new representative volume element would be in. The exact
determination of stresses is rather complicated and is beyond the scope
of _this book. Therefore, in-the- following -we shall- describe -a-semi-
empirical approach to provide better estimates of moduli than the
simple rule-of-mixtures equations can.
Noting that matrix is softer than fiber, we assume that

Omy = nyb-fy, 0<ny< 1

(9.48)

Oms = M30p, 0<n, <1
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Af
A-Ag

Figure 9.7 A concentric cylinder model. Boundary
conditions to be applied are different from those for
the representative volume element of Figure 9.4,

The above equations imply that the average matrix stress has the same
sign as, but lower in magnitude than, the average fiber stress, in trans-
verse or shear loading. The stress partitioning parameters Ny and 7
measure the relative magnitudes of the average matrix stresses as com-
pared to the average fiber stresses.

The equations for the moduli can now be derived following the same
procedure as in the preceding section but using Equation 9.48. The
results are

1 1 L o 1 >
e - f 1 -

FI dypy 1
E Vit Mg, G § Gm

The above equations are the same as Equations 9.39 and 9.41 ifn,v,,
and ngv, , respectively, are replaced by v,

The moduli predicted by Equation 9.49 with n, =Ny = 0.5 are
compared with the experimental data in Figures 9.5 and 9.6. These
equations are seen to provide much better estimates of moduli than do
the simple rule-of-mixtures equations of the preceding section.

According to Equation 9.49 the moduli increase as the stress parti-
tioning parameters decrease. Decreasing parameters indicate an increas-
ing load sharing by fibers. Since fiber is stiffer than matrix, the resulting
composite moduli therefore increase.

So far we have not concemed ourselves with the dependence of the
partitioning parameters on constituent properties. The experimental

(9.49)

!
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correlations in Figures 9.5 and 9.6 show that the parameters are weakly
dependent, if at all, on the fiber volume fraction. The results of some
advanced methods [3, 4] based on the concentric cylinder model of
Figure 9.7 can indeed be used to show that n; is independent of v,.

Furthermore,
1 G
=={1 + —

Because of the axisymmetry of the concentric cylinder model, it is
easier to determine moduli other than E,. Specifically, the moduli to
be determined are the transverse plane strain bulk modulus k and the
transverse shear modulus G When the only nonvanishing straln com-
ponents are ey =€, =€, k, ylelds

0, = 0, =2k,€ (9.51)

The transverse shear modulus relates the shear strain to the shear stress
in the yz plane:

0v: = Gyé€,; (9.52)

ane ky and Gy are known, the transverse Young’s modulus Ey is
given by o e e e T

£ 4kyGy
y = T - (9.53)
ky + mGy

where

4k v 2
m = 1+—-—2x (9.54)

X.

The equations for ky, and G, are similar to those for E, and E.
That is,
1 1 ( 1
i S v + v ) (9.55)
P , f
y vty Vm_l kfy k (continues)
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1 1 + 1 ) (9.55)
—_—= ve——+tNgVy = .
G, vtV ( Gy " Gm) (concluded)

where

! <3 PR )
= —_—— — Vm ———
TSR Gry

In the foregoing equations the subscript y has been used to denote the
transverse properties of fiber in case the fiber is transversely isotropic.
In this regard we note that graphite and aramid fibers are not isotropic
but rather transversely isotropic. The equations derived so far are
summarized in Table 9.2 where P stands for property.

table 8.2

formulas for composite moduli

1

= (vPp+ v, P
Ve +nv,, I " m)
Engineering ,
constant P P, P n
b‘x bx Ef bm 1
Vy Vy Vf Ym 1
1
E ——1— L — ng*
s E Gf G
1 1 1 .
k — - - Nk
Y ky k fy K
. 1 1 1 *%
G — — G G
Y G y Gf y Cm

*See Equation 9.50
**See Equation 9.56

(9.56)
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If the fiber is isotropic, the subscript y can be dropped. Furthérmore,
Equation 9.53 for the fiber becomes

k, = Gy (9.57)
R B
Therefore, i, reduces to
N = S 1+ (1—2py) -(—’-'-n— (9.58)
2(1—v,,) Gy

Equations 9.49 and 9.53 together with Equations 9.50 and 9.56 are
shown graphically in Figures 9.8 and 9.9, respectively, for three dif-
ferent composite systems: glass/epoxy, boron/epoxy and graphite/
epoxy. The properties of the epoxy are

- T "~ E, = 345GPa, v, =035 =~ ©(9.59)

In addition to the Young’s moduli listed in Table 9.1, Poiséon’s ratio
of the fibers is B

v, = 0.2 (9.60)

For the glass and boron fibers, Ef and vy are sufficient. However, for
the graphite fiber we further have

Er,= 16.6 GPa, G, =827 GPa

(9.61)

ny

= 5.89 GPa

The stress partitioning parameters are shown as functions of Gf/Gm
in Figure 9.10. The matrix Poisson’s ratio used is 0.35 and fibers are
assumed to be isotropic with v, = 0.2 for n;. The decreasing stress

partitioning parameters indicate less load sharing by the matrix as
Gf/Gm increases.



20 -

398 introduction to composite materials

~
O

TRANSVERSE MODULUS (GPa)
~
Q

|

1 |
A

o
o

02 0.4

06 0.8
FIBER VOLUME FRACTION

1.0

Figure 9.8 Transverse moduli predicted by
Equation 9.53. The properties used are in
Table 9.1 and Equations 9.59 through 9.61.

For most structural composites the modulus ratio G,, /Gy is much

smaller than unity. Therefore, the corresponding stress partitioning

parameters can be approximated by

s

Mk

Ne =

1
2

2(1-v,,)

- 3~4v,,
4(1—v,,)

(9.62)
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Figure 9.9 Shear moduli predicted by Equa-
tions 9.49 and 9.50. The properties used are
in Table 9.1 and Equations 9.59 through 9.61.

Thus, it is seen that these parameters depend only on the Poisson’s ratio
of the matrix. For most epoxies »,, is close to 0.35. Therefore, the final
values of the remaining i’s are

(9.63)
ne = 0.62

From Figure 9.10 we see that the error in using the limiting values of
n’s is less than 5 percent as long as the modulus ratio Gf/Gm is larger
than 20, which is the case for glass/epoxy.
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Figure 9.10 Stress partitioning parameters predicted by Equations
9.50, 9.56 and 9.58. Fibers are assumed to be isotropic.

6. hygrothermal properties

Hygrothermal properties of composite as a homogeneous, anisotropic
material were discussed in Chapter 8. In this section we shall investigate
how constituent properties affect the macroscopic hygrothermal be-
havior of composite. ‘

Consider a composite which is completely dry. In the dry state, the
total mass M of a composite body is the sum of those of the fibers and
of the matrix,

Now the same composite absorbs moisture and reaches an equilib-
rium state. The new mass M’ after the moisture absorption is given by

M = M+M,, +M, +M,, (9.65)

Here M,,,, and M;,, are the masses of moisture absorbed in the fibers
and matrix, respectively. The last term on the right-hand side of
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‘Equation 9.65 is the amount of moisture entrapped in voids. The mois-

ture concentration in the composite is then -

M'—M
M

C=

=Cpiy, +ogm+ M, /M (9.66)

where m’s are again mass fractions, and ¢’s are moisture concentrations
in the constituents. Specifically, we have

cp=2Y o =Y (9.67)

Equation 9.66 can also be rewritten in terms of mass densities or
specific gravities;

¢ = (CpvmbPm + cvePp PP

and (9.68)

=y VmSm + cpvesy + v, /s

Note that p,, is the density of moisture.

Unlike temperature the moisture concentration varies from fiber to
matrix. Inorganic fibers such as graphite and boron do not absorb mois-
ture and hence, ¢ = 0. However, the moisture concentration in most
epoxies can be as high as 8%.

As discussed in the preceding chapter, a composite undergoes a non-
mechanical strain upon temperature change and absorption of moisture.
It has been pointed out that such a nonmechanical strain is measured
from the stress-free state and consists of the thermal strain and the
swelling strain. Here we shall see how the constituent properties affect
the nonmechanical strains of a unidirectional composite.

In the presence of nonmechanical strains ey; and e, ;, the constitutive
relations of the constituents, Equation 9.28, are replaced by

gfl' = Sf,/&-f, + Ef’-, Emi = ml]EMJ + Cmni (969)

Note that, since the constituents are isotropic, we have

e =e =e e, =0
fx 1y rcr
! (9.70)

emx = €my T €m, € =0




402 introduction to composite materials

In Equation 9.69 the volume averages are taken only over the total
strains and the stresses, but not over the nonmechanical strains because
the'latter are uniform in each constituent.

Now we use the rule-of-mixtures assumptions and recall that

€ T gfx = €mx
(9.71)
=0

Ql
[

Oy = Oy = Omy

The nonmechanical strains e, and e, of the composite are then ob-

tained by solving Equations 9.10, 9.12 and 9.69 in conjunction with
Equation 9.71 for €, and €, in terms of ey and e,, . The results are

vafef + Vm Em em

vk, +v, E
7o (9.72)

e, vier t v ey, Fvevres v, v e, —(pre vy, vy, ey

In the absence of any applied stress, e, and e, are the composite
strains resulting from e, and e,, . From Equation 9.71 we see that there
are no residual stresses in the transverse direction in the constituents.
Since f—fx = €n,x = €,,the residual stresses in the longitudinal direction
are obtained by substituting Equation 9.72 into Equation 9.69 and
solving the resulting equations for the stresses. Thus the residual stress

in the fiber is given by

e, —e
R =y, E F —m 9.73
Ofy = VmEp foEf T E, ( )

whereas in the matrix we have

ef_em

R = vpEE, — L™
mx = M E L v B

(9.74)

If the thermal strains are proportional to temperature change, we can
use the thermal expansion coefficients
el = a, (T—T,)
(9.75)
ef = op(T—T,)
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where T is the final temperature of interest and T, is the stress-free
temperature, usually the cure temperature. However, the dependence of
moduli on temperature does not allow the use of thermal expansion
coefficients for composite. Therefore, we define average thermal
expansion coefficients by

o = = i (9.76)

Substitution of Equations 9.72 and 9.75 into Equation 9.76 yields

[44 =
x v EAT) + vy Epy (T) 9.77)
o, = videtvya, tvevede v, v, 0, —(vpvpt v, v, ) o

Equation 9.77 can also be used as instantaneous thermal expansion
coefficients when the change of moduli with temperature can be
neglected in comparison with that of strains. Equation 9.77 is shown
graphically in Figure 9.11 for a glass/epoxy composite.

The determination of swelling strain requires not only the average
moisture concentration in composite but also the moisture concentra-
tions in constituent phases. Assuming zero void fraction, we solve
Equation 9.68 for ¢,

= s c (9.78)
Vm Sm + VfoCfm

Cm

where ¢y, is the ratio; s is specific gravity.
Crm = Cflcm (9.79)

Substituting into Equation 9.72 the swelling coefficients of constit-
uents defined by

efl = chf' eﬁ =6mcm (9.80)



404 introduction to composite materials

and using Equation 9.78, we obtain the average swelling coefficients of
composite as

Bx

ViErCrm By + vin £ By

s
(VfEf + Vi Em ) (Vm Sm + VfoCfm)

ve(l + Vf)cfm ﬁf + vy (1 +0,)8,

VinSm tveSeCrm

W A O )
g Q Q Q Q

THERMAL EXPANSION COEFFICIENT ((um/m)/K)
~
Q

0 J
o o2 o4 06 08 /0O
FIBER VOLUME FRACTION

Figure 9.11 Thermal expansion coefficients of
glass/epoxy composite. The properties used
are: a,= 5.0 (um/m)/K, o, = 54 (um/m)/K,
Ef = 72 GPa, Ve= 0.2,E,, = 2.76 GPa,»,, =
0.35.

§— (Vfo + Vin Vm )Bx
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A considerable simpliﬁcation of the foregoing equations is possible
for graphite/epoxy composites for which

¢f = a~0, E,/E <1 (9.82)

The final results are given below without derivation:

o, = B,=0

a, = v, (1+v, ), (9.83)
1+v,

ﬁy = Sm ms

7. strengths

As discussed in Chapter 7, unidirectional composites possess excellent
strength and stiffness in the longitudinal direction because load is
carried mostly by fibers. In the other loading conditions the load
sharing is about equal between fibers and matrix; therefore, composite
strengths are comparable to those of the matrix used.

Another parameter which plays a very important role in the strength
of composites is the interface between fiber and matrix. The assump-
tion of perfect interfacial bond under which elastic properties were
discussed in the preceding sections was appropriate because the stresses
involved were rather small. However, since failure of a material is
initiated at the weakest point, a weak interface will certainly lead to a
premature failure when a substantial load sharing is expected by the
interface. '

Load sharing by constituent phases depends on the type of loading.
Therefore, we shall discuss strengths of unidirectional composite under
five different loadings: longitudinal tension and compression, transverse
tension and compression, and shear.

Consider a unidirectional composite subjected to a uniaxial tension
in the fiber direction. Since €, = €7, = €, in the present case, the
stresses in the constituent phases will be as schematically shown in
Figure 9.12. This figure has been constructed based on the following
observations. First, fiber is linear elastic up to fracture. Second, matrix
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STRESS

MATRIX

STRAIN

Figure 9.12 Typical stress-strain relations
of fiber, matrix and composite. The com-
posite failure strain is close to the fiber
failure strain. The matrix is nonlinear
above the fiber failure strain.

is linear initially; however, it behaves nonlinearly as strain increases.
The. strain at which nonlinearity starts to appear is greater than the
fracture strain of fiber.

Since not all fibers are expected to be of equal strength and equally
stressed, some fibers will fail before others. When these fibers break,
there are three modes of further damage growth depending on the
properties of the matrix and interface.

If the matrix is brittle and the interface strong, the cracks created by
the fiber breaks will propagate through the matrix across the neighbor-
ing fibers leading to the composite failure. If the interface is weak, then
interfacial failure can be initiated at the fiber breaks and the fiber-
matrix debonding will grow along the broken fibers. A longitudinal
damage growth is also possible in the form of matrix yielding between
fibers if the matrix is ductile with low yield stress. As far as the com-

posite strength is concerned, the latter two modes of damage growth

have a similar effect. Therefore, we shall simply divide the failure mode
under a longitudinal tension into the transverse crack propagation mode
and the longitudinal damage growth mode.

The transverse crack propagation mode is in fact what is observed in
brittle, homogeneous materials. In this failure mode, the strength of
stronger fibers cannot be fully utilized, and hence the composite
strength is not an optimum.
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In the other extreme case of complete longitudinal damage growth
mode, broken fibers are simply separated from intact ones as far as load
sharing is concerned, and the composite will behave like a dry bundle of
fibers. We shall now show that the resulting strength is less than the
average fiber strength.

Suppose a bundle of many fibers of equal length L is subjected to a
strain €. In the bundle the same strain e is applied to every fiber.
Suppose the fraction of unbroken fibers at the strain € is given by

R(e) = exp [—L(ele, )] (9,84)

where « and €, are constants. The above function is shown
schematically in Figure 9.13. The nominal stress of the bundle, which is
the load divided by the original cross-sectional area of the fibers, is
equal to

o = EseR(e) (9.85)
1.0
< o5k
S~ .
& a
0.5
1.0
17) ]
o / z 9
€/ (6,077

Figure 9.13 Fraction of unbroken fibers at different
" strain levels. The function (1—R(€)) is known as a
Weibull distribution for the failure strain.

~ The bundleis said to have failed when it cannot support any further
increase in load. That is, the bundle failure strain Y, satisfies
do _ -
Te =0 (9.86)

€= Yb
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Using Equations 9.84 and 9.85 in Equation 9.86 leads to

Y, = e,(La)/e (9.87)

The strength in stress of this bundle of length L is thus
X,(L) = Eye, (Lae) /e (9.88)
where e is the base of the natural logarithm.
Equation 9.84 can also be regarded as the probability of a single fiber
surviving the strain €. Thus (1—R) is the cumulative distribution of

failure strain and is known as a Weibull distribution (see Appendix 9.1).
The average fiber failure strain Yf is thus given by

= = —113 = -1/e +
Y, /; ¢ (F55)de=co L T+ 1) (9:89)

where I['(+) is the gamma function. The corresponding average strength
of the fiber of length L is

X:(L) = E;Y;=Epe, L7/*T(1 + 1/a) (9.90)

We can now study the ratio of the bundle strength to the average
fiber strength,

Xp(L) _ E;YyR(Y,) _ I
Xf(L) Efo (ae)t/e V(1 +'1/a)

(9.91)

Figure 9.14 shows the ratio Xb/Xf as a function of 1/« together with
some experimental data. The factor 1/« is a measure of scatter, almost
equal to the coefficient of variation (see Appendix 9.2). Thus the
bundle strength can be substantially lower than the fiber strength if the
fiber strength exhibits a large scatter.

Thus far we have shown that the longitudinal strength will be lower
than maximum if the failure mode is dominantly one of the transverse
crack propagation or of the longitudinal damage growth. An optimum
strength is realized somewhere between these two extremes; that is,
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Figure 9.14 The bundle strength is lower than the
average fiber strength. The reduction increases with
1/a; i.e., the larger the scatter in fiber strength, the
larger the reduction. The data are for £ and S glass
fibers, taken from [5, 6].

both transverse and longitudinal damage growths are localized to the
fiber breaks to lead to an optimum composite strength. The three
typical failure modes are shown pictorially in Figure 9.15.

In the optimum condition the effect of broken fiber is limited to a
small region of length & as shown in Figure 9.16. Thus, unless two fiber
breaks are within this region, one broken fiber does not know the

. existence of the other broken fiber. We then assume that the composite

fails when all the fibers within this region fail. Thus the composite
strength X can be taken as the strength of a fiber bundle of length &
multiplied by v, plus the matrix contribution v,, 5;’;, < [7]

X = Vbe('S) + v Erﬂr‘zx =

()
— v vy, O
(ae)t/e (1 + 1/a) 4 7oL m

(9.92)
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Figure 9.15 Three typical failure modes of unidirectional composite; (a)
Longitudinal damage growth typical of dry fiber bundle; (b) mixed failure
mode desired; (¢) transverse crack propagation mode typical of brittle,
homogeneous materials.

Prret

Note that X, is the average strength of a

the average matrix stress at the time of
the composite failure. -
The ratio (X—v,, 0y )/(vsXp) deter-

L ’ )
L-__— L: _{ '-'L__ P mined by Equation 9.92 is shown as a
1T r1 - r0Tr function of L /6 for three different values
T of 1/a in Figure 9.17. If the fiber
] strength has a small scatter, i.e., small
l l l l l l 1/e, the composite strength is close to
‘ . (v; Xy + v, 0y ) regardless of L /8. Other-
Figure 9.16 Zone of inter- wise, (X—v,, Oy )/(vsXy) increases with
action between fiber L/(S .
failures. The composite ‘ .
falls when sufficient number Strength wusually exhibits a larger
of fibers fail within the zone scatter than modulus because the former
of length 8. depends much more on defects within a

material than the latter. Since the probability of finding defects in-
creases with the volume of the material tested, the strength distribution
will depend on the volume. In the case of fibers of the same cross-
sectional area, the volume is proportional to the length, and hence we
can have Equation 9.84. An example of length-dependence of strength
is shown in Figure 9.18 for glass fibers.

To determine 6, which is required to use Equation 9.92, consider a

fiber of length L, not &, and that ¢}, is
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Figure 9.17 The strengthening efficiency of fiber
depends on & and §. « is the shape parameter of the
fiber strength distribution and § is the length of the
fiber failure interaction zone. X r is the average
strength of fiber of length L.
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Figure 9.18 Length effects on average tensile strength of
glass fibers. The average tensile strength decreases as the
gage length increases. (Data from [8]).

broken fiber in a matrix, Figure 9.19. As the fiber is pulled away from
the matrix, the interfacial shear stress at the tip of the fiber increases.
Assuming a rigid-perfectly plastic behavior at the interface, we see that
the shear stress is equal to the yield stress 7, if there is a plastic slip at



! introduction to composite materials

a longitudinal tension the role of the matrix was rather secondary.
longitudinal compression, however, the matrix provides lateral
«pport for fibers to carry compressive load without buckling. Without

ich support fibers can hardly resist any compression because of their

small diameter.

Consider a composite subjected to compression in the fiber direction,
Figure 9.20. Fibers may have initial curvature as shown in the figure [9].
Suppose the initial deflection of fibers can be described by

v = f, sin"l—x (9.100)

where / is the half Wavelength. When a compressive stress o is apnlied,
the final deflection of fibers become

X

v = fsinl— : (9.101)
l g
IEEEEN
}' .
4
P 4
/ y
PPt
oA o

(a) I M+dM (6)
+V+dV

ar

4
CFM
oA

(c)

Figure 9.20 Local buckling at a point in com-
posite; (@) initial state; () under a compressive
stress 0; (c¢) free body diagram for a representa-
tive volume element of cross-sectional area A.
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Let us take an infinitesimal representative volume element of length
dx and cross-sectional area A at distance x. A free body diagram for this
element is shown in Figure 9.20(c). The balance of moments requires
that . e

M _y 4+ o4 dv _

0 (9.102)
dx X

The bending moment M is borne by the fiber while the shear V is the
result of the overall shear deformation of the representative volume
element. Thus

d2 .
M= Ef[f"‘;x—z (V—Vo)
(9.103)
V=dAEI9 (—.)
dx - °

Here E/I; is the bending stiffness of the fiber and E; is the effective
shear modulus of the composite.’

Substituting Equation 9.103 into Equation 9.102 and noting that
If/A = vfwf? /12, we obtain an equation for ¢

2
o= [E + T vk (‘_j£> } (1 —’;_) (9-104)

In actual composites, wf/l is much smaller than unity. The second term
inside the brackets can therefore be neglected with the final result

fo>
= 1—=2 (9.105)
o = FE < 7 )

Equation  9.105 describes a relation between the compressive stress
and the amplitude of fiber deflection f. As ¢ increases, f will increase
reaching a critical value f, at which the composite fails. Thus the com-
pressive strength X' is given by

f .
=g [1-1 (9.106)
)
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Figure 9.19 Simplified stress distributions
around and inside a broken fiber. A rigid-
perfectly plastic behavior is assumed at the
interface.

the interface. Denoting by o the stress in the fiber a distance x from the
fiber end, Figure 9.19, we use the equilibrium condition for the fiber to
obtain

(1]
= — 9.93
4‘ry ( )

Ok

Thus the maximum distance over which interfacial yielding occurs is'
limited by the maximum value of o which the fiber can sustain without
failure in the interval (0, x).

The average of o, is obtained from Equations 9.140 and 9.141 in
Appendix 9.1 using x_ . in place of L. Since 0, = Ef€,, Equation
9.90 can be used to replace 0, by X;. The final result is

Latl) |Ue
X

Qi

= X; (9.94)

max
max

The distance x,, corresponding to G,,,, then follows from substi-
tution of Equation (9.94) into Equation (9.93):

x
(9.95)

X af(at+1)
max _ (-_f> [(a+1)L/d] 1/(at+1)
d 4r,
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Noting that 6 = 2x we finally obtain

max

5 Xf af(at+ 1)
=2z [(a+1)L/d) ! /et D

ar, (9.96)

If the fiber strength has very little scatter, i.e., a is very large, then
8/d approaches X/(27,),

s X,
a7, (9.97)
The composite strength given by Equation 9.92 reduces to
X = vaf + vm-&,";,x
(9.98)

where the second equality follows from the linear behavior of the
matrix up to the composite failure.

Equation 9.98 is called the rule-of-mixtures for the longitudinal
strength. Although it has been derived under the assumption of deter-
ministic fiber strength, it has proven to provide a reasonable estimate
for actual composites. It is possible that the combined effect of all the
parameters in Equations 9.92 and 9.96 makes Equation 9.98 a reason-
able approximation. ) : '

Since Equation 9.98 is based on the assumption of fiber failure trig-
gering the composite failure, the composite strength can be less than
the matrix strength X,, if fiber volume fraction is too small. We can
determine this minimum fiber volume fraction by substituting X,, for
X and solving the resulting equation for Ve i.e.,

ymEr (X_ _E_)

Since X, /Xf >E, /Ef, see Figure 9.12, there is always a minimum
fiber volume fraction required to strengthen matrix by fiber rein-
forcements.

(9.99)
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There are two possible sources of composite failure: local shear fail-
ure and bending failure of fibers. The maximum local shear stress can
be calculated from Equation 9.103. The f, is then the value of f when
this maximum local shear stress reaches the shear strength S of the
composite:

=56t (9.107)

S
E,

3|~

On the other hand, fibers can fail in bending when the maximum
bending stress reaches the fiber strength X;. In this case we obtain

20 1 X

9.108
wy o) Ef ( )

fo=fy =

Since 21/wf is much larger than unity, f, will be larger when calcu-
lated from Equation 9.108 than from Equation 9.107. Therefore, the
compressive failure of composite is caused by a local shear failure and
the resulting compressive strength is

X =E 1 (9.109)

1+ (nf, /DI(S/Ey)

When fibers are perfectly straight, f,// vanishes, and hence the com-
pressive strength becomes equal to the shear modulus. In actuality,
however, X' is always less than E;. For boron/epoxy composites, the
ratio X'/E; is slightly less than 0.5 whereas it is less than 0.25 for
graphite/epoxy composites. Other than the initial deflection of fibers,
there is another reason for such discrepancy: the nonlinearity in shear
of unidirectional composites. In such cases we can show that E; in
Equation 9.109 must be replaced by the secant shear modulus at fail-
ure. Note that the secant modulus is the ratio of the stress to the
corresponding strain. Since the secant modulus at failure is lower than
E,, with difference increasing with ductility, the resulting compressive
strength will be lower.

In transverse tension or compression the load sharing by matrix is of
the same order of magnitude as that of fibers. In the elastic range the
average matrix stress was seen to be about half the average fiber stress.

micromechanics 417

Since matrix is much weaker than ﬁber matrlx will fail first, causing
the composite to fail.

We recall that the composite stress is related to the average stresses in
the constituents by

Ey = Vfafy + v O’ (9110)

mYmy
= +v (U/n, — D) Gy, (9.111)

The stress g,,, in matrix is not uniformly distributed; it reaches a
maximum at the fiber-matrix interface. Therefore, failure will be ini-
tiated at the fiber-matrix interface when the stress there reaches the
matrix tensile strength X,, or the interface strength X;,, , whichever is
smaller. Introducing a stress concentration factor X,,, defined by

g
K, — e (9.112)
Omy

we can express the transverse tensile strength of composite as

_ 1+ Vf(l/’ny_‘l) X

m
K.,

(9.113)

Of course, X,, should be replaced by X;,, if X, <X,

An exact determination of My and K is dlfﬁcult because the
behavior of matrix is nonlinear near failure, and is therefore beyond the
scope of this book. However, we can make the following predictions
based on Equation 9.113.

If the matrix is linear elastic up to failure, then the factor [1 +
vi(1/n,—D1/K,,, is known to be less than unity and decreases with
increasing fiber volume fraction. Therefore, the transverse tensile
strength will always be less than the matrix tensile strength, the differ-
ence increasing with vg.

On the other hand, if the matrix is ductile, stress concentrations can
be relaxed so that K,,, becomes closer to unity. As a result the trans-
verse tensile strength can be greater than the matrix tensile strength.
However, if there is a premature interface failure before the matrix goes
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into the nonlinear range to allow a stress relaxation, the composite
behavior will be the same as if the matrix is brittle.

An experimental evidence for the observations just described is

shown for glass/epoxy composites in Figure 9.21. Here the strength
ratio Y/X ,, is seen to be as high as 2.3. The curve represents a constant
composite strength of 30 MPa. Thus, the composite strength itself does
not depend much on the matrix strength. At lower X,, the matrix is
usually more ductile; consequently, a much better utilization of the
matrix strength is realized. As X,, increases, the matrix becomes more
and more brittle and the stress concentration increases. As a result, the
composite strength is lower than the matrix strength.

2.5

2.0

1.5

Y/X,

1.0

0.5

|
00 50 100
Xm (MPa)

Figure 9.21 The composite-to-matrix strength
ratio in transverse tension decreases as the matrix
strength increases. Note that the composite
strength can be higher than the matrix strength.
The data are for E-glass and S-glass/epoxy
composites.

The fracture surface in transverse tension is normal to the loading.
However, in transverse compression it is approximately 45° to the load-
ing. Thus, the transverse compression failure is in fact a shear failure on
the 45° plane. The transverse compressive strength is four to seven
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times as high as the transverse tensile strength.

Finally, the mechanisms of shear failure are similar to those of trans- -
verse tension failure. The shear strength S can be studied using an
equation similar to Equation 9.113:

1+ve(lfn, — 1
S= Vf(K/ns ) Sm

ms

(9.114)

where S,, and K, are respectively the matrix shear strength and the
matrix stress concentration factor in shear. Again, if the interface
strength S, is lower than S,,, S, should be used in place of S,,, .

Typical failure modes corresponding to the strengths discussed so far,
except for the longitudinal tension, are schematically shown in Figure
9.22. The longitudinal compression failure is accompanied by a brush-
like failure surface. In transverse tension or shear the failure surface is
parallel to the fibers and normal to the specimen surfaces. The failure
surface in transverse compression is still parallel to the fibers but makes
an angle of about 45° with the loading direction. Strength values of
those composites discussed in the preceding chapter are listed in
Table 7.1.
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Figure 9.22 Schematic views of typical failure modes: (@) longitudinal
compression; () transverse tension and shear; and (c) transverse
compression.

8. sample problems

a. The weight of the matrix in a void-free glass/epoxy composite is
measured to be 36% of the weight of the composite. What is the fiber
volume fraction? The specific gravities of the epoxy and glass are 1.2
and 2.6, respectively.
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Since v, = 0 and me = pfvf/p, a comparison of Equations 9.3 and 9.5
yields

Py (1—m,)

(9.115)
Py + Py, —my,)

Vf=

Substituting the known values of the variables into Equation 9.115, we
obtain the fiber volume fraction as

v = 1.2 X 0.64 = 0.45 (9.116)

2.6 X 0.36 + 1.2 X 0.64

b. Using the representanve volume element of Figure 9.4, calculate
the stresses afx and 0,,, in a 60 vol % glass/epoxy composite resultmg
from the application of a transverse tension of 10 MPa. Assume that efx
= €,,x, and use the properties in Table 9.1 and Equations 9.59 and
9.60.

The equations to be used are in Equation 9.44. The variables are:

Ef = 72 GPa, Vf=0.2
E, = 345 GPa, v,, =0.35 (9.117)

vy = 06, v, =04

Thus the stresses 0y, and 0,,, are

c_rfx = —2.2 MPa
(9.118)
Em += 3.3MPa
Note that, as expected, we have
Vfafx + Vm a-mx = 0 (9-1 19)

c. Using the equations in Table 9.2 and the properties in Table 9. l.

and Equations 9.59 and 9.60, determine the moduli Ex, vx, E, and E;
for a 60 vol % boron/epoxy composite. , -
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The composite moduli are determined simply by substituting the
constituent properties into the equations in Table 9.2. First, the shear
and plane strain bulk moduli are

E ‘
G; = ——L—=170.8 GPa, k; = 284.7 GPa
(9.120)
E,
G, = —2  =1.28 GPa, k, = 4.27 GPa
2(1+v,,)
Next, we calculate the stress partitioning parameters:
n, = 0.504, n; =0.776
(9.121)

ng = 0.618

Finally, the composite moduli are
E, = 0.6 X410+ 0.4 X 3.45=247.4GPa

v, = 0.6X0.2 +04X0.35=0.26

E, - 0.6 +0.504X04 _ _ 490Gpa

0.6/170.8 + 0.504 X 0.4/1.28

r = 0.6 +0.776 X 0.4 _ |5 17Gpa (9.122)

Y 0.6/284.7 + 0.776 X 0.4/4.27.

G = 0.6 +0.618X04  _ ,31 cp.

Y 0.6/170.8 + 0.618 X 0.4/1.28

m = 1.013

E, = 12.69GPa
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d. For the same composite as in Problem ¢, determine the composite
moduli using the rule-of-mixtures equations in Section 4. Compare the
results with those in Problem c.

The moduli E, and », do not change. E, and E; are determined
from Equations 9.39 and 9.41, respectively:

E, = 8.52GPa, E; =3.16 GPa (9.123)

These moduli are lower than those calculated in Problem c.

e. For graphite fiber the shape parameter for the strength distribu-
tion is 7.68. What is the expected ratio of the bundle strength to the
average fiber strength?

The strength ratio is given by Equation 9.91. Using a = 7.68 and
noting that I'(1 + 1/7.68) = 0.94, we obtain

X _ 1

=0.72 (9.124)
Xf  (7.68 €)1/7-68 (0.94)

/. The average strength of 25-mm long graphite fiber is 2.80 GPa with
a coefficient of variation of 15%. The fiber is used with an epoxy
having a tensile strength of 50 MPa and a modulus of 3.45 GPa to make
a 50 vol % graphite/epoxy composite. Assuming the interfacial yield
stress 7, to be half the matrix tensile strength, (a) determine the length
6 of the fiber failure interaction zone; (») determine the composite
strength using 6; and (c¢) compare the strength obtained in (b) with that
from the rule-of-mixtures. The composite is also 25-mm long, .

The shape parameter « is calculated from Equation 9.145 and the
fiber diameter is found in Table 9.1. Thus, the required variables are:

a = 7.68, d =7 pm

X, = 2.80GPa, 7,=25MPa

L = 25mm, ve= 0.5 (9.125)
vm = 0.5

— 3.45

oy = 2800 X-—=—=42MPa
230
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(a) The length 6 is determined frdm Equation 9.96:

8 = 0.88 mm (9.126)
(b) The composite strength follows from Equation 9.92

X = 1550 + 21 = 1571 MPa (9.127)

(¢) The rule of mixtures for the strength is Equation 9.98. Therefore,
we have

X = 1400 + 21 = 1421 MPa (9.128)

In the present case there is about 10% difference between Equations
9.92 and 9.98.

9. conclusions

The properties of a composite depend on the geometrical arrangement
and the properties of its constituents. The exact analysis of such struc-
ture-property relationship is rather complex because of many variables
involved. Theérefore, we have introduced a few simplifying assumptions
regarding the structural details and the state of stress within composite.

We have seen that the concept of a representative volume element
and the selection of appropriate boundary conditions are very im-
portant in the discussion of micromechanics. The composite stress and
strain are defined as the volume averages of the stress and strain fields,
respectively, within the representative volume element. By finding rela-
tions between the composite stresses and the composite strains in terms
of the constituent properties, we can derive expressions for the com-
posite moduli. In addition, we have shown that the results of advanced
methods can- be-put-in-a-form similar-to the rule-of-mixtures equations.

Estimating the hygrothermal expansion coefficients is not much dif-
ferent from what we do for the elastic moduli. A major difference in
analyzing the thermal expansion and swelling is that in the former the
temperature does not change from fiber to matrix whereas in the latter
the moisture concentration can vary drastically. Thus any analytical
modeling should take into account such nonuniformity of the moisture
concentration.
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Prediction of composite strengths is rather difficult because there are
many unknown variables and also because failure critically depends on
defects. However, we can qualitatively explain the effects of con-
stituents including fiber-matrix interface on composite strengths.
Certainly, failure modes can change depending on the material com-
binations. Thus, an analytical model developed for one material com-
bination cannot be expected to work for a different one. Ideally, a
truly analytical model will be applicable to any material combination.
However, such an analytical model is not available at present. There-
fore, we have chosen to provide models each of which is applicable only
to a known failure mode. Yet, they can explain many of the effects of
the constituents.

appendix 9.1

Consider a fiber of length L over which stress field is given by

0 = 0,f(x) (9.129)
where o, is the stress at x = L, so that f(L) = 1.

Now we divide the fiber into N segments so that in each segment the
stress can be assumed to be uniform. Suppose the probability of the ith
segment surviving the stress 9(i) is given by [Ro(o(,.))]Ax(i). Here Ax(,-)
is the length of the ith segment. .

The probability of survival of the entire fiber is glven by

N (9.130)
R= 7 [R,(04)]**®

i=1

Taking natural logarithms of both sides, we rewrite Equation 9.130 as

N
InR = Z Ax(yInR,(0(;)) (9.131)

i=1

micromechanics 425

The right-hand side can be converted to an 1ntegral by taking N infi-
nitely large:

L
InR = f InR,(g)dx - (9.132)
o
Therefore, R becomes

' L

R = exp [f InR, (o)dx] (9.133)
[+]

Suppose R, is a Weibull distribution,

R,(0) = exp [—(0/0,)*] (9.134)

where «a and g, are called the shape parameter and scale parameter,
respectively. Substitution of Equation 9.134 into 9.133 yields

L
R = exp [——f (a/o,) dx] (9.135)
[2]
Using Equation 9.129, we_can rewrite Equation 9.135 as
o\ ¢
R(g,) = exp [ - ] (9.136)
) G0 :
where
L o
0,0 = ao[ f“(x)dx] * (9.137)
o

Equation 9.136 can be used to determine the probability of survival
for any given stress field 0. For example, suppose ¢ is uniform over the
fiber length. Then Equation 9.136 reduces to

R(0) = exp [—L(0/0,)*] 1(9.138)
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This equation can be easily converted to Equation 9.84 by noting that

o = Ee.
Next, suppose o varies linearly with x so that

(9.139)

=X
fx) = 7
Substituting Equation 9.139 into 9.137, we obtain
1/a
Tso = T, (QTH) (9.140)

Thus, the average of o, that can be applied to the point of fiber failure

is given by (see Appendix 9.2)

0, = 0, (1 + o) . (9.141)

appendix 9.2

Let us consider the probability of survival R(0) at stress o,

, e
R)=exp | —|— (9.142)

00 E
The function R(0) is also the probability that the strength is greater

than . Therefore, the probability density function f(o) for strength is

o

fo) = —9R _ & ga—1 oy [—<i’->a:| (9.143)
do g© a, (

The mean ¢ and the standard deviation s for the strength distribution
are respectively given by

a=f B of(o)do=ooI‘<l +é)
(9.144)

R (R
o i . o o

micromechanics 427

where I'(*) is the gamma function. The coefficient of variation (C.V.) is

thus
I (1 + —)
23

2 (1+1)
o

Qle

(9.145)
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10. homework problems

a. A glass/epoxy specimen weighing 1 g was burnt and the weight of the
remaining fibers was found to be 0.5 g. Knowing that the densities of
glass and epoxy are 2.6 and 1.25, respectively, determine the density
of the composite in the absence of voids. If the actual density of the
composite was measured to be 1.55, what is the void fraction?

b. For the composite bar
shown, determine the y
average strain €, . ] Aluminum Steel

c. For the composite bar vz I .
shown, determine the ; y, Ls |
average stress g, . '

d. Derive Equation 9.26. ' y

e. Prove Equation 9.47. | Steel —

f. For a 60 vol % Gr/Ep = =
composite determine " 77777727777~ x
the moduli E,, E,, E, Aluminum

and », using the equa-

tions in Table 9.2. Compare the results with those from the rule-of-
mixtures equations of Section 4. Use the properties in Table 9.1 and
Section 5.

g. Derive Equation 9.49.

h. The maximum water absorption in a typical epoxy is 6%. What is the
maximum amount of water in a graphite/epoxy (= 0.70)? Specific
gravities of the epoxy and composite are 1.25 and 1.6, respectively.

i. Derive Equation 9.72.

j. Determine the curing stress 5’5 , in the matrix of a 60 vol % glass/
epoxy. Use the properties in Figure 9.11.

k. Determine the swelling coefficients for a 70 vol % graphite/epoxy.
The swelling coefficient of epoxy is 0.35, and graphite does not
absorb moisture.

[ In Figure 8.19 the longitudinal tensile strength does not suffer any
reduction at elevated temperatures. Would the same trend be
observed of the longitudinal compressive strength? If not, explain
why.

m.The shear strength of a composite with surface-treated fibers in-
creases with fiber volume fraction whereas the opposite is true when

¢

micromechanics 429

fibers without surface treatment are used. Provide the reasons for

such difference. Is such difference an indication that a better fiber- -

matrix bond is achieved through fiber surface treatment?

n. The density of a bulk epoxy at room temperature is p,,,. The

density p,, of the same epoxy in a composite is different from p,,,
because of the presence of residual stresses. Determine the ratio
PmPmo in terms of the curing strains ¢! and el, the constituent

- elastic moduli, and the fiber volume fraction v;. Assume that €y =
€nx and oy, =0, .
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nomenclature

A,A,,A, = Cross-sectional areas of representative volume element

¢ = Specific moisture concentration, in g/g

d = Fiber diameter i -

11,1, = Amplitudes of fiber deflection

G = Shear modulus

KpoKpy = Matrix stress concentration factors in shear and trans-
verse tension, respectively (= (0, )ax /Em )

k = Plane strain bulk modulus

L,L, L, L; = Dimensions of representative volume element
L = Fiber length

l = Half wavelength of fiber deflection

M = Mass

m = Mass fraction

R(e) = Probability of survival at strain € or fraction of fibers
surviving €

s - = Specific gravity

uv,v, = Boundary displacements

vV = Volume

VEVm oV = Volume fractions

vV, = Final and initial fiber deflections, respectively

w = Width of a constituent phase in representative volume

" element

S = Shear strength

XX = Longitudinal tensile and compressive strengths, re-
spectively

Y, Y = Transverse tensile and compressive strengths, respectively

@ = Shape parameter for Weibull distribution of fiber failure
strain

() = Gamma function

) = Length of fiber failure interaction zone

€ = Scale parameter for Weibull distribution of fiber failure
strain

€ = Constant strain components

E,- = Volume-average strain components
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ng = Stress partitioning parameter in transverse shear

Nk = Stress partitioning parameter in plane strain hydrostatic
tension and compression ’

ny = Stress partltlomng parameter m transverse tensmn and
“compression

N = Stress partitioning parameter in shear

P = Mass density .

ad, = Efeo

a? = Constant stress components

7; = Boundary stress components

0; = Volume-average stress components

Sub b = Bundle

Sub f = Fiber

Sub m = Matrix

Subv = Void

Sub y = Transverse
Sub int = Interface
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appendix A
transformation equations

1. general transformation

The transformation equation of a tensor depends on its rank. In fact,
the definition of a tensor is one that follows a particular transformation
equation. Then, by definition, the quantity is a tensor of a given rank.
Stress and strain are second rank tensors. Modulus and compliance are
fourth rank tensors. Their transformation equations are:

Ty = awajsTxs (A.1)
Tiil'cf = Qi Gn A o 9pp Tmnop (A.2)

where T' are the transformed components of 7. We use uncontracted
notation here. The number of indices now correspond to the tensorial
rank. The a’s are direction cosines of the new, transformed coordinate
system relative to the old, original coordinate system. The usual range
and summation conventions apply. When we have » dimensions,

ij,...=12,...n (A.3)

The beauty and simplicity of tensors lie in their generality that only
one transformation equation will suffice; i.e.,

i’jk e aimainako s Tmno - (A.4)
There is no conceptional difficulty if we want to define the transforma-

tion equation of a sixth rank tensor in four dimensional space. (It may
take a little time writing it down.)
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2. specialized transformation

We have not followed the general tensorial approach in this book..
Instead we use specialized equations of various quantities. We want to
list the reasons:

® We decided to use contracted notation in order to reduce the
number of indices. The general definition of transformation must
be altered. In the contracted notation, we no longer can treat odd
rank tensors such as vectors.

® We decided to use engineering shear strains. The transformation
equation for strain must be altered accordingly. The strain trans-
formation in Table 2.5 is not the same as the stress transformation
in Table 2.1.

® We also decided to differentiate between the behavioral quantities
from material properties. Stress, strain and their integrals (stress
resultant, etc.) are the behavioral quantities, and are all second
rank tensors. Stiffness and compliance and their integrals (e.g.,
in-plane modulus) are material properties, and are fourth rank
tensors. Strength parameters Fj; and G;; are also fourth rank
tensors. We have properties which are second rank tensors such as
thermal and moisture expansion coefficients and the strength
parameters F; and G;.

The separation above is useful for composite materials. For the
behavioral quantities, we are usually interested in the on-axis stress or
strain using the transformation from a fixed reference, off-axis co-
ordinate system, say, the 1-2 axes. We normally go from the off-axis to
the on-axis of a ply. For the material properties, we are interested in
the off-axis properties from the on-axis orientations. It is the opposite
of the stress, strain, etc. We let the material rotate while we stay fixed
at the same reference coordinate system. The rotation is 6 for uni-
directional composites; vy for laminated composites; see Figure 4.12 for
the rigid body rotation. The angle 6 is also used for the transformation
of stress and strain. The latter 6 has the opposite meaning because it is
intended to go from the off-axis to the on-axis. The transformation
equations are listed separately in this Appendix. The opposite meaning
of the angle of transformation is included in the equations. No sign
change is necessary.
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3. transformation of 0, N;, M,

Listed in this section are the transformation of stress and their integrals
from the off-axis, 1-2 coordinate system to the on-axis, 1'-2' coordinate
system.* Three formulations for the stress transformation will be given;
viz., the power, and the multiple angle and the invariant functions. The
transformation of the stress integrals can be done by direct substitution
of N; or M; for a;.

table A.1
“’stress’’ transformation in power functions
9, % %
g/ m? ne 2mn
%’ n? m? -2mn
g' | —mn Comn m2-p2

m=cos8, n=sné

table A.2
“stress’’ transformation in multiple angle
functions
P q9 r
o/ / cos28 $in28
4 / — cos28 - sin28
%' : —-sin28 - cos28
1
where p --5(01 +0,)
=1 ’
q —"2"(01 —0,) (A.9)
r = agg

*The on-axis coordinates were the x-y for the unidirectional composite; and the x,-y; coordinates
for the i-th ply in a laminate.



436 introduction to composite materials

table A.3
“stress’’ transformation in invariant functions
7 R
g’ / cos2(8-8,)
o' / -cos2(8-6,)
%' - $in2(8-6o)
_ 1
where 1 = p—a(al + 0;)

R = \/q2 + r2 (A6)

1 ar_1 . r_1
0, = —tan! Z==sin"! L=—cos1 L
° q 2 R 2 R
4. transformation of ¢;, €7, k;
table A.4
“‘strain’’ transformation in power functions
&, A €
€’ m? n? mn
& n? me -mn
& | -2mn 2mn m2-n2?
table A.5
“strain’’ transformation in multiple angle
functions
p q r
A / cos28 sin28
<! / -cos28 -sin28
&' -2sin26 2c0s28
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where P =-;—(€1 +e)
_1. ~
q —3(61 —€,3) (A.7)
r = —1'66
2
table A.6
“strain’’ transformation in invariant functions
I R
€/ / cos2(8-8,)
&/ , / -cos2(8-6,)
s/ -2sin2(6-6, )
where I = p=%(e, + €3)

R =Vg@+r (A.8)

1 tan™! =

1
q 2

6,

5. transformation of Q;;, A, 8,,, D;;, G, Hy;

ij’

These are material properties of the fourth rank tensor. The transforma-
tion goes from the 1'-2' to, the 1-2 coordinate system. This transforma-
tion can also be viewed as subjecting the composite material through a
rigid body rotation while the observer remains fixed at the 1-2 co-
ordinate system. We do not distinguish between the on-axis and off-axis
here because the starting point (§ =+ = 0) may not be on the material
symmetry axes. The material can be anisotropic. Angle 6 or v is
measured from the 1-2 to the 1'-2' axes, havmg posmve value 1f the
rotation is-counterclockwise:
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table A.7
“gtiffness’’ transformation in power functions
/ /
@ Crz Qz Qos Oe Ore

@, m* n* 2m2n2 4m2n2 -4m’n —4mn?

@ps n* m* 2m*n* 4m*n* 4mn? 4m*n

Q) m?n* min?  m*+p* -4m2n?  2(m3n-mn3) 2(mn3-m3n)

Qs | m*n* m*n* -2m*n*

(m%-n%°  2(m3n-mn3) 2(mn? —m?n)

m*-3mn* J

Q6 m?n  -mn® mn’-m’n 2(mn°-mn) m*-3m2n? 3m2pz-p*
Qss mn® -m°n  m°n-mn® 2(m’n-mnd 3m2n2-p*
where m = cosf = cosy, n =sinf =siny
table A.8 A
, ““stiffness” transformation in multiple angle functions
/ 4 vl o 7
a, Y, cos28 cos48  -2sin26  -sin48
@ss Y, -cos28 cos48 2sin28 -sin 48
9, Uy -cos46 sin48
GQse Us - cos48 sin48
Q6 5 sin26 sin4é cos28 cos48
Qe ;’ sin28 - sin48 cos28 -cos48
where
! 1
U, =§[3Q1'1 +3Q;, +201, +4046] = U,
I | .
Uz =3 (@11 —Q32] = U,cos20 + 2U,sin26
U; =§[Ql’l +Q2'2 _2Q;2 —4Q66] =U3COS40+U7Sin40
| '
Ua =§[Q11 + 032 + 6012 —4Q66] = U, (A.9)
14 1 ’ ’
Us =§[Q11 + Q22 — 2012 + 40461 = Us
1 1
Us =5[Q{6 +036] = —3 U,sin26 + Ugcos20
1 .
Uiy ==(016 —Q36) = —Ussind6 + U,cos4d

N
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table A.9 )
“stiffness’’ transformation in invariant functions
Q, Y c0s2(8+8,) cos4(6+8,)
Qss 74 -cos2(8+8,) cos4(6+6,)
@ Use -cos4(6+8,)
Qs Us - cos4(6+8,)
Q6 C £ 5in2(6+8,) sin4(6+8,)
Qes 5 sin2(6+8,) -sin4(8+8,)
where R, = vV U;? +4U¢?
2U¢
51_ = —l-tan" E——
2 2
(A.10)
R2 = vV U; 2 + U; 2
U;
82 = - tan_l "—"'
4 U,
6. transformation of S;;, a;;, d;;, o, [ 8. Fij
table A.10
““compliance’’ transformation in power functions
Si Sz Sie Ses Sie St
S, m* n? 2m*n* m*n? ~2m’n -2mn’
Spp n* m* 2m?n* m?n? 2mn3 2m°n
S,e m%n?-  min? m*+n* -m?n? m3n-mn? mn3-m>n
Ses |4m2n2  4m2n2 -8m2n? (m2-n%)2  4(m°n-mn3) <4(mn’-m?n)
S,e |2m°n  -2mn? 2(mn®-m°n) mn®-m°n m*-3m2n* 3m?n?-n*
Ses |2mn®  -2m°n  2(m°n-mn3) m3n-mn® 3m’n*-n* m*-3m?n?

*Transformation equations are valid when g is symmetric.
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table A.11
““compliance” transformation in multiple angle functions
/ vl 7 U U/
Su U, cos28 cos48 -2sin 28 - sin48
Sz2 U, -cos2b cos46 2sin28 ~sin4é8
 Si U, " —cos46 sin48
Sée Us —dcos48 4 sin48
Sis sin28 2sin 48 2cos 28 2cos48
Sz sin28 —2sin 48 2c0s28 —2cos468
where

U =-;—[3S{, + 385, + 281, +Shel = U,

U, = % (S]; — 84,1 = U,cos20 + 2U,sin20

A =é[${, + 84, =281, —S8is] = Uscosdd + U,sindd

1 (A.11)
Us =§[S{1 +S’32 + 6S;2 "Sésl = U,
Uj = Z1S}: + 555 =250, +Sie) = Us
’ 1 t ! -
Ui =7 (86 +Siq] = —%UzstO + U, cos20
I 1 ! ’ .
U, =Z[S,6 — 8261 =—Uj;sind8 + U, cos40
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table A.12
“compliance’’ transformation in invariant functions
/ R, Ry
Su Y, cos2(8+8) cos4(8+5,)
S22 U, -cos2(8+s8) cos4(8 +6‘,}
S're Uy -cos4(8+68,)
Sse Us ~4cos4(6+86,)
Sie sin2 (8+8,) 2sin 4(8+8,)
Ky sin2(8+8) —2sin 4(8+5,)
where R, = \/ U;? +4U¢?
22U,
6 1 = l tan—l ——' ‘
2 U,
(A.12)
R, = VU +U;?
Lo N 1 Uy
82 = l tan~! —
4 ’
3
7. transformation of G;
g table A.13
“strength in strain” transformation in power
functions
6/ 63 Gé
G, m2 n2 -2mn
G> n2 me 2mn
Ge mn -mn m2-p2
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where

where

table A.14
“strength in strain’’ transformation in multiple

angle functions

p/ ql r! °
G, / cos28 -sin28
G2 / -cos28 sin26
Ge sin26 -cos28
P'=2(Gi +6)
2
’ 1 ’ )
q = =(G; —G3) -
2
r =G
table A.15
“strength in strain’’ transformation in invariant
functions
I R
G, / cos 2(8+68o)
Gs / ~-cos2(8+6,)
Ge sin2(8+6p)
_ _1
I = p_E(Gl +G,)
R = Vg +r?
’ ’ ’
0, = LianZ =LlginZ =LloosL
2 q' 2 R 2 R

(A.13)

(A.14)

8. transformation of F;, o;, 3;
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where

table A.16
“‘strength in stress’’ transformation in power
functions

/ / /
7 7 s
£ m2 n? -mn
A n? m? < mn
Fe 2mn -2mn m2-p2
table A.17

““strength in stress’’ transformation in multiple
angle functions

p! q’ rl

' / cos28 -sin26
173 / -cos 268 sin28
s 2sin28 2cos28
' _ 1 ' '
p ==, +F,)
2
o 1 v
q ==(F; —F,)
2
N
r ==F
2 6
table A.18

“strength in stress’’ transformation in invariant
functions

(A.14)

I R
£ / cos2(8+68,)
5 / —cos2(8+6,)
A 2sin2(8+8,)
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where I

p=%(F1 +F,)

‘/qlz +r12

~appendix B

unit conversion tables

To convert

1. ;s Q”, A,';, " Into Nm™2 #/il'lz ‘ kgf/mm2
1Pa=1Nm™ Nm™ 1 6.89; +3 9.81; +6
#/in? .145; =3 1 1.42; 43

kgf/mm? .102; —6 .703; —3 1

* To convert g1 . ;g1 241

2.8, Fp o, .. Into (Nm™2) (#/in?) (kgf/mm*)
(Nm™2)! 1 .145; —3 .102; —6
(#/in®)™! 6.89; +3 1 .703; —3

(kgf/mm?2)™! 9.81; +6 1.42; 43 1

To convert

3. F, Nm?)"  @#fin?)” (kgf/mm?)
Into
(Nm™2)” 1 210; =9  10.4; —15
(#/in?)"° 475, +6 1 49.4; —9
202; 46 1

(kgf/mm?) > 96.2; +12

et
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To convert ' .

4. N, Ay Info N/m #/in kgf/mm
N/m 1 175; 43 9.81; +3
#/in 571, 3 1 56.0; 0
kgf/mm .102; 3 17.8; =3 1

To convert .

5. oy, ay Into m/N in/# mm/kgf
m/N 1 5.71; =3 .102; 3
in/# .175; +3 1 17.8; =3
mm/kgf 9.81; +3 56.0; 0 1

To convert

6. M, B, Into : N v # kgf
N 1 445; 0 9.81; 0
# 225, 0 1 2.20; 0
kef .102; 0 454; 0 1

To convert L o .

7. By Into N~ # kgf™

N! 1 225; 0 .102; 0
#7 445; 0 1 454; 0
kgf™! 9.81; 0 2.20; 0 1

H|
|
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g _To convert N 4i Kefomm
. D; m in -
Dﬂ Into g
1J=1Nm Nm 1 112, 0 9.80; —3
_ o e Hin 8.85; 0 1 86.8; —3
kgf-mm 102; O 11.5; 0 1
To convert ” el -
9. 8, dy Into (Nm) (#in) (kgf-mm)
(Nm)™! 1 8.85; 0 102; 0
(#in)™! 112; 0 1 11.5; 0
(kgf-mm)™! 9.80; —3 86.8; —3 1
To convert - _— -
10. &, Int m in mm
nto
m™! 1 394; 0 1; +3
in™! 25.4; 3 1 254; 0
mm™! 1; =3 394; —3 1
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Activation energy, 340
Aluminum, 291
Aramid, 396
Aramid/epoxy, 19
Axisymmetry, 395

Balance
of energy, 330, 335
of mass, 334
Bending
three-point, 208
vibration, 215
Boron, 378, 397, 401
Boron/epoxy, 19, 397, 416

Boundary conditions, 337, 353, 382,

387
Boundary displacement, 384, 385
Bundle, 407

failure strain, 407

strength, 408

Chemical shrinkage, 345
Compliance, 13, 19, 343
coupling, 226
in-plane, 120, 226, 345
flexural, 176, 226
off-axis, 88
Composite
density, 379, 380
mass, 379
stress, 381, 383
strain, 381, 384
volume, 377 - .
Compression
longitudinal, 5
transverse, S

index

Compressive strength
longitudinal, 282
transverse, 283

Concentric cylinder model, 394, 395

Constituent
average stress in, 381
average strain in, 381
compliance of, 386
constitutive relations of, 386

Crosslinking, 345

Cumulative distribution, 408

Cure
process, 345
temperature, 345

Curing
curvature, 348
in-plane strain, 348
strain, 346

Curvature, 169, 173

Design, 310

Displacement
in-plane, 6
out-of-plane, 171

Elastic moduli, 377
Elastic range, 416
Engineering constants, 13, 19
flexural, 177
in-plane, 121
off-axis, 97
Environmental change, 334
Epoxy, 397
Equilibrium state, 400



452 index

Expansion coefficients, 352
hygrothermal, 377
swelling, 334, 352, 403
thermal, 342, 344, 354

Fabrication
process, 345
stress, 345
Failure, 280, 405
modes, 419
ultimate, 159
Failure criteria, 278
maximum strain, 159, 279
maximum stress, 159, 279
quadratic in strain, 287
quadratic in stress, 280
von Mises, 280, 286
Failure envelope
in strain space, 291
in stress space, 288
Fiber ’
bending stiffness, 415
density, 378
diameter, 378
failure strain, 408
length, 407
modulus, 378
strength, 378, 408
Fick’s equation, 336
First ply failure, 34, 159, 306
approximate envelope, 315
envelope, 311
Flexural strength, 35
'Fourier’sequation, 335

!

Gamma function, 427
Gas constant, 340
Geometric factors for
coupling modulus, 234, 237
flexural modulus, 180, 237
in-plane modulus, 124, 237
Glass, 378, 397
Glass/epoxy, 19, 339) 382
Graphite, 378 J/
Graphite/epoxy, 19, 339, 397

Heat conduction, 330
Honeycomb core, 179

Hybrid, 213

Hygrothemal properties, 340, 400

Index
free, 218
summation, 218
Interaction, 280, 284
Interface, 405
strength, 365, 417
yielding, 412
Invariants of
compliance, 92, 93
in-plane modulus, 129
modulus, 75, 76
strain, 54
stress, 41

Kevlar, 378
Kevlar/epoxy, 19

Laminate
angle-ply, 136, 200
anti-symmetric, 249, 357
balanced, 137
code, 116
cross-ply, 131, 189, 239
general, 217
general bidirectional, 149
general Pif4, 146
homogeneous, 226
quasi-isotropic, 142
sandwich, 167, 194
symmetric, 115, 227
unsymmetric, 239, 354

Linear combinations of
compliance, 92
modulus, 73
strain, 53
stress, 39

Load sharing, 405

Loading path, 60, 313

Local buckling, 414

Local shear failure, 416 .
Longitudinal damage growth, 406 .

Mass fraction, 379, 380
Material symmetry axes, 70, 330
Matrix

moduli, 392

shear strength, 419

tensile strength, 417
Maximum shear stress, 48
Mechanical strain, 342
Micromechanics, 377
Minimum fiber volume fraction, 413
Modulus, 14, 20

coupling, 223

flexural, 173, 223

in-plane, 118, 223

off-axis, 66, 77
Mohr’s circle for

flexural modulus, 181

in-plane modulus, 129

modulus, 88

strain, 57, 60

stress, 42, 46
Moisture, 352

absorption, 337, 400

concentration, 333, 401

concentration gradient, 333

content, 337

desorption, 337

diffusion, 331

effects of, 362
Moment, 169, 219

bending, 170

twisting, 170

Moment-curvature relations, 169, 174, 220

Nonmechanical
curvature, 349
moment, 350
strain, 342, 401
stress resultant, 350
Normal coupling, 69, 100, 122, 152
Normalizing factor, 185
Notation, 3, 8

index

" Off-axis configuration, 32

On-axis configuration, 32
Optimum strength, 311, 411

Parallel axis theorem, 256
Phase angle in transformation of
compliance, Appendix A

in-plane modulus, 130
modulus, Appendix A

strain, 54

stress, 41
Ply

failure, 35

group number, 127

number, 182

orientation, 71

strain, 157

stress, 157
Poisson’s ratio

fiber, 397

in-plane, 122

longitudinal or major, 10

matrix, 397

transverse or minor, 11
Pre-exponential factor, 340
Prepreg, 345
Principal direction, 47
Principal stress components, 47
Probability density function, 426
Probability of survival, 424

Relative humidity, 340

Representative volume element, 379, 415

Residual strain, 348

Residual stress, 345

Rigid body rotation, 62
Rule-of-mixtures, 127, 390, 392

Shear coupling, 69, 204

Shear modulus, 389
in-plane, 121, 154
longitudinal, 12, 390
secant, 416
transverse, 399
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Shear strength, 419
Sizing, 310
Specific gravity, 401
Specific heat, 334
Specific moisture concentration, 334
Stacking sequence, 116
Stiffness, 1, 18
Strain, 2, 6
compatibility, 391
generalized, 228
in-plane, 119
off-axis, 66
on-axis, 66
Strain-displacement relations, 6, 50, 172
Strain energy density, 16, 385
Strength, 288, 405
in-plane, 306
off-axis, 299
off-axis shear, 300
Strength distribution, 410
mean, 416
standard deviation, 416
Strength parameters
in strain, 287, 294
in stress, 281, 293
linear, 281
quadratic, 281
Strength ratio, 31, 302
Stress, 2
applied, 383
average, 3, 116
average fiber, 394
, average matrix, 394
equivalent, 349
local, 3
off-axis, 34, 66
on-axis, 34, 66
Stress concentration factor, 417, 419
Stress partitioning parameters, 394, 398
Stress relaxation, 418
Stress resultant, 120, 219
Stress-strain relations, 2, 8
in-plane, 116, 219
off-axis, 66, 68
on-axis, 13, 66
Successive ply failures, 34
Swelling strain, 349, 401
Symmetry, 280
compliance and modulus, 16, 101
general orthotropic, 32
isotropic, 17

Symmetry:
material, 9
midplane, 116, 243
orthotropic, 10, 59, 149
square symmetric, 17, 58
transversely isotropic, 344

Temperature, 330, 401
effects of, 363
gradient, 330
stress-free, 355
Tensile strength
longitudinal, 282
transverse, 282
Tension
longitudinal, S
transverse, S
Thermal
conductivity, 330
diffusivity, 334
moment, 347
strain, 349
stress resultant, 347
Transformation equations for
compliance, 89
concentration gradient, 333
coupling compliance, 270
coupling modulus, 270
flexural modulus, Appendix A
heat flux, 332
in-plane modulus, Appendix A
modulus, 69, 74
moisture diffusion coefficient, 334
moisture flux, 332
strain, §2
stress, 38
temperature gradient, 332
thermal conductivity, 332
Transverse crack propagation, 406
Transverse plane strain bulk modulus, 399

Ultimate strength, 35
Unidirectional composite, 1

Void fraction, 380
Volume fraction
fiber, 379
ply, 127

Volumetric strain, 344

Weibull distribution, 408, 425
scale parameter, 425
shape parameter, 411, 425

Weighting factor, 183

Width ratio, 387

Width-to-thickness ratio, 354

Yield stress, 362

Young’s modulus
in-plane, 121, 154
longitudinal, 10
transverse, 10

index
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