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preface 

The objective of this book is to introduce the governing principles of 
the stiffness and strength of uni- and multi-directional composite mate­
rials. It is intended as a textbook at the undergraduate and graduate 
levels. It can also serve as a reference for the engineers in industry. A 
course in strength of materials provides the desired background. 

We hope to show that composite materials are conceptually simple. 
They offer unique opportunities in design beyond being lighter sub­
stitutes of conventional materials. The structural performance offered 
by composite materials is much more versatile than can be realized with 
conventional materials. We can put such versatility to our advantage in 
design through a full comprehension of the principles governing their 
structural behavior. An elucidation of these principles is the underlying 
theme of our book. 

Our approach relies heavily on a unified and recurring formulation. 
Closed form solutions and simplified formulas are presented whenever 
possible. Figures, tables and charts of numerical results for one typical 
composite material throughout the book are given. Since our book is 
meant to be self-contained, references are given only when a set of 
pertinent data and established concepts are cited, or when a detailed 
derivation is omitted in the text. We wish to apologize for any inadver­
tent omissions. We are happy to see the rule-of-mixtures equations 
applicable in many situations. We feel that the governing principles can 
be presented more clearly if we separate geometric factors from mate­
rial properties whenever possible. Even tu ally, the reader will find that 
transformation equations and the state of combined stresses are the key 
concepts in the study of composite materials. 

In addition to the basic text presented in nine chapters, a special 
section on notation and terminology follows this preface. At the end of 
each chapter, a principal nomenclature for that chapter is listed. Trans­
formation equations are summarized in Appendix A; unit conversion 
tables, in Appendix B; and listing of general references in the English 
language, in Appendix C. 

This book is based in part on several United States Air Eorce reports 
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written by us. We are indebted to our colleagues for their invaluable 
help. The opportunities to teach and to learn from the students at the 
Composite Materials Computation Workshops at the University of 
California at Berkeley, and at similar ones in Stuttgart, Tokyo, Osaka, 
Peking, and other places are gratefully acknowledged. The formulas in 
the book can be conveniently solved by programmable pocket calcula­
tors. Such programs are available from the authors. 

Dayton and St. Louis 
May 1980 
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STEPHEN W. TSAI 
H. THOMAS HAHN

notation and terminology 

The choice of notation and terminology can be a source of confusion. 
Definitions and explanations of our choice and format are listed as 
follows: 

• The contracted notation is used which calls for the use of engi­
neering shear strain. (See Table 1.3)

• Poisson's ratios are defined in Equations l .5 and l .6 for the
on-axis unidirectional composites; in Table 3.15 for the off-axis.
They are different from those in existing literature.

• The angles of coordinate transformation and ply orientation have
the same sign. Proper signs are incorporated in the equations such
that the transformation of stress and strain (the behavioral quanti­
ties) goes from the reference axes to the material symmetry axes.
The transformation of modulus, compliance, expansion coeffi­
cients and other properties of material goes from the material
symmetry axes to the reference axes; the opposite of the behav­
ioral quantities. Separate equations are listed in Appendix A to
show the· differences.

• The laminate code in Equations 4.1 and 5.1 follows ascending
order from the bottom to the top ply.

• A balanced laminate means that each off-axis ply or ply group is
matched by one with opposite ply orientation. This is meaningful
only for the in-plane modulus. A balanced laminate will be ortho­
tropic in its in-plane behavior, but is not orthotropic in its flexural
behavior.

• There are coupling coefficients beyond the traditional Poisson's
ratio. The 61 and 62 components are the shear coupling coeffi­
cients; the 16 and 26, the normal coupling. Such coefficients can
be applied to off-axis unidirectional composites as in Table 3.15,
and to symmetric laminates in Equations 4.18 and 5. 23 et al.
These coefficients are treated as engineering constants. Compar­
able coefficients are not defined for general laminates. These
laminates have unique couplings between the in-plane and flexural
behavior defined by the B or f3 matrix.

ix 



• The curvature-displacement (k-w) relations in Equation 5.9 must
have negative signs. The twisting curvature must have a factor of 2
to be consistent with the engineering shear strain.

• Symmetry is used for numerous situations.

a) Material property symmetry or reciprocity:

b) Material symmetry in terms of structures:

Anisotropy, Orthotropy, Square Symmetry, Isotropy 

c) Odd and even symmetry of material property transformation:

d) Midplane symmetry of a laminate:

Symmetric laminate: 0(z) = 0(-z)

Asymmetric laminate: 0(z) =I= 0(-z)

•Antisymmetric laminate: 0(z) = -0(-z)

• Shear is a source of ambiguity.

Longitudinal shear: 
Longitudinal shear modulus: 
Longitudinal shear strength: 
In-plane shear: 

Interlaminar or transverse shears (a
xz 

and a
yz

) arc not covered or 
discussed in this book. 

• Strength ratio is defined as the allowed over the applied stress or
strain, as in Equation 7.48. This should not be confused with the
stress ratio used in design handbooks. Stress ratio is the reciprocal
of our strength ratio. Both use R as the symbol.

• Subscripts and superscripts are omitted from symbols if their
meaning is self-evident; e.g., U

1 
means U

1 Q or U
1 
sin Chapter 3;

v; means v; A in Chapter 4, v; D in Chapter 5.

• Inconsistency may exist in the last digit of numerical results due
to round-off. Intermediate steps in calculations do not always
carry the correct exponent or units. The final step, however,
should be the correct answer with the correct units.

chapter 1 
stiffness of 

unidirectional composites 

The stiffness of unidirectional composites, like any other structural 
material, can be defined by appropriate stress-strain relations. We will 
show that the coefficients or material constants of these relations can 
be packaged in a set of engineering constants, compliance components, 
or modulus components. The components of any one set are directly 
expressible in terms of the components of the other sets. The stiffness of 
unidirectional composites is governed by the same stress-strain relation 
that is valid for conventional materials. Only the number of independent 
constants are four for composites and two for conventional mate1iais. 
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1. stress

Stress is a measure of internal forces within a body. This together with 

strain are the key variables for the determination of stiffness and 

strength of a material. The mechanisms of deformation and failure are 

also interpreted in terms of the state of stress and strain. They are the 

fundamental variables for the mechanical behavior of materials similar 

to temperature and heat flux for heat conduction; or pressure, volume 

and temperature for gas. 
There is no direct measurement for stress. Instead, stress is inferred 

or derived from the following: 

• Applied forces using stress analysis.
• Measured di�placements also using stress analysis.

• Measured strains using stress-strain relations.

When we talk about stress we usually mean the average stress over some 

physical dimension. This is similar to population measured over a city, 
county or state. In our study of composites we deal with three levels of 

average stress: 

• Micromechanical or local stress is that calculation based on dis­
tinct, continuous phases of fiber, matrix and, in some cases, the
interface and voids.

• Ply stress is that calculation based on assumed homogeneity within

each ply or ply group where the fiber and matrix are smeared and

no longer recognized as distinct phases.
• Laminate stress resultant N or moment M is an average of ply

stresses across the thickness of a laminate. The individual plies are

smeared.

In Figure 1 we show two levels of this idealization of average stresses. 

On the micromechanical level in (a) the fiber and matrix stresses vary __ 

from point to point within each constituent phase. The average of these 

stresses is the ply stress. In a laminate or on the macromechanical level, 

each ply or ply group has its own ply stress. The average of several ply 
stresses is the laminate stress or stress resultant N.

We will use contracted notation in this book. Single subscripts for 
stress and strain, and double subscripts for compliance and modulus 

will be followed. The conversion from the conventional or tensorial 

notation to the contracted notation is shown in Table 1.1. 

' 

O' 

(a) 
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) 

(T 

z 

N/h 

(b) 

Figure I.I Schematic relations between local and 
average stresses: 

table 1.1 

(a) Micromechanical level where stresses in fiber
and matrix are recognized. This average is the
ply stress.

(b) Macromechanical level where stresses in plies
and ply groups are recognized. This average is
the laminate stress.

stress components in contracted notation 

Conventional or 

tensorial notation Contracted notation 

or 

or 

or 

The single subscript system can be readily extended to the index nota­

tion to be introduced later. The subscript s or 6 is therefore used to 

designate the shear component in the x-y plane. The use of subscript 6 
for the shear stress component is derived from the 6 components in 

_ 3-dimensional stress. Although subscript 3 has occasionally been used 
for this shear component, it is a source of confusion since 3 can also be 

used for the 3rd normal stress component in 3-dimensional problems. 

Subscript 6 is used to avoid this confusion. 
The state of stress in a ply or ply group is predominantly plane stress. 

The nonzero components of plane stress are those listed in Table 1.1. 

The remaining three components are of secondary and local nature and 

will not be treated in this book. It is convenient to represent the state 

of plane stress in a 3-dimensional stress-space where the three orthog­

onal axes correspond to the three stress components. The stress-space is 
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shown in Figure 1.2. Here each applied stress, represented by three 
stress components, can be readily portrayed as a vector in this 3-
dimensional space. The unit vector which signifies the direction of the 
applied stress is represented by the conventional notation of 

(i,j,k) 

where the components of the unit vectors are directional cosines. All 
three unit vectors are shown in Figure 1.2. Typical unit vectors for 
simple states of stress will be shown in the following table. 

(Ty 

0,, 

Figure 1.2 Stress components 
in 3-dimensional stress-space. 
Unit stress vectors are also 
shown as arrows. 

o; 

(Ty t 

11 
+ 

O'i, 

Figure 1.4 Transverse 
uniaxial stress in tension 
and compression. The 
respective unit vectors 
are ( 0,± 1 ,0). 

(Ty 

0,, 

Figure 1.3 Longitudinal 
uniaxial stresses in tension 
and compression. The 
respective unit vectors 
are ( ± 1,0,0). 

CT. 

Figure 1.5 Positive and negative 
longitudinal shears. The 
respective unit vectors are 
(0,0,±1). 

.. 
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table 1.2 

unit vectors for simple stress states 

Type of stress Unit vector Figure no. 

Longitudinal tension 
Longitudinal compression 
Transverse tension 
Transverse compression 
Positive longitudinal shear 
Negative longitudinal shear 

(l,0,0) 
(-1,0,o) 
(0,1,0) 
(0,-1,0) 
(0,0,1) 
(0,0,-1) 

1.3 

1.3 

1.4 

1.4 

1.5 

1.5 

The sign convention must be observed faithfully when we deal with 
composites. The difference between tensile and compressive strengths 
may be several hundred percent. Moreover, there can be an even greater 
difference between positive and negative shear strengths in composites. 
For conventional materials signs are often immaterial, but here this 
attitude can be fatal. We must be precise and accurate about signs. This 
is a necessary discipline when we work with composites. 

In Figure 1.6 the sign convention is shown in detail. All components 
in (a) are positive; in (b) negative. For the normal components, signs are 
no problem._ Shear, hmyever, is more difficult. The rule is that a shear is 
positive if the shear is acting on a positive face and directed toward a 
positive axis; or the shear is positive if it is acting on a negative face and 
directed toward a negative axis. Thus, two positives or two negatives 
would make a positive shear. If we have a mixture of positive and 
negative the shear is negative. 

(a) 

ty 
�ro; 
1� -� 

--��H--x 
r�-o; 

(b) 
Figure 1.6 Sign convention for stress 
components: 

(a) All components shown are positive.

(b) All components shown are negative.
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2. strain

Relative displacements in a plane will induce 2-dimensional strain. I_f 
the displacements do not vary from point to point within a material, 
there will only be rigid body motion and no strain. Thus, strain is 
simply the spatial variation of the displacements. There is no material 
property involved. Strain is related to displacement. Both are geometric 
quantities. 

From the definition of strain, we can establish the stress-strain rela­
tion. The constants in this relation govern the stiffness of composites. 
This process is the same for conventional materials. 

Let t:.u = Relative infinitesimal displacement along the x-axis 
6v = Relative infinitesimal displacement along the y-axis 

From Figure I. 7 we can define: 

Jt 

L)V 

LlY 

�-Ll;;;;,;.;.x _ _i,.:;;Ll;_;:u
'-'--

_ X 

Figure I. 7 Normal strain 
and displacement relations. 

€ = 
X 

lim 
lly->O 

(1. I) 

The partial differentiation is used be­
cause the displacements are functions of 
both x and y coordinates. Strain, like 
stress, is a local property. In general it 
varies from point to point in a material. 
Only in special cases is the state of strain or 
stress uniform; we call this homogeneous 
strain or stress. This special case is perti­
nent to testing for property determination 
where we deliberately try to create a 

simple, homogeneous strain or stress. 
Note that the normal strain components are associated with changes 

in the lengths of an infinitesimal element. The rectangular element 
before deformation remains rectangular although its length and width 
may change. There is no distortion produced by the normal strain 
components. Distortion is measured by the change of angles. The 
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original rectangular element would be distorted into a parallelogram. 
Geometrically this is equivalent to stretching one diagonal and com­
pressing the other. This combined action will produce distortion which 
is measured by shear strain. Figure 1.8 shows the combined action 
produced by the same displacements that produced the normal strain 
components in Equation 1.1. The desired shear strain is: 

av 
where a = tan a === -

ax 

y 

au 
b = tanb===­

ay 

X 

(a) 

y 

Au 

(b) 

Figure 1.8 The strain-displacement relation for shear 
strain. The arrows show the stretching and compressing 
of the diagonals. This shear strain is positive in (a); and 

negative in (b). 

The resulting strain displacement relation is 

(1.2) 

( 1.3) 

(1.4) 

This is the engineering shear strain which is twice the tensorial strain. 
Engineering shear strain is used because it measures the total change in 

I 
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angle, or the total angle of twist in the case of a rod under torsion. This 
factor of 2 is often a source of confusion. When in doubt, the strain­
displacement relation, in Equation I .4, is the best place for clari­
fication. 

As with stress, contracted notation will be used for strain com­
ponents. The conversion table between the components of the conven­
tional or tensorial strain and the contracted strain is shown in 
Table 1.3. 

table 1.3 

strain components in contracted notation 

Conventional or tensorial notation 

Contracted 

notation 

E
x 

or €1 

E
y 

or €2 

€9 or €6 

Strain vectors can also be portrayed in strain-space. Because of the 
coupling between the normal strain components, known as the 
Poisson's effect, the response to a uniaxial stress creates a biaxial strain 
state. For example, for conventional as well as unidirectional materials 
an extension is coupled with a lateral contraction if the applied uniaxial 
stress is tensile. In Figure 1.9 we will show the unit strain vectors as the 
result of uniaxial longitudinal and transverse tensile stresses in (a) and 
(b ), respectively. If the applied stress is compressive, the direction of all 
the stress and strain unit vectors will be reversed. 

3. stress-strain relations

We will limit the composites of this book to the linearly elastic mate­
rials. The response of materials under stress or strain follows a straight 
line up to failure. With assumed linearity we can use superposition 
which is a very powerf1,d tool. For example, the net result of combining 
two states of stress is precisely the sum of the two states-no more and 
no less. The sequence of the stress application is immaterial. We can 
assemble or disect components of stress and strain in whatever pattern 

(o) 
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(b) 

Figure 1.9 Unit strain vectors resulting from uniaxial 
stresses. 

(a) Biaxial strain (1,-v,0) resulting from uniaxial
stress ( 1,0,0).

(b) Biaxial strain (-v,1,0) resulting from uniaxial
stress ( 0, 1,0).

we choose without affecting the .result. Combined stresses are the sum of 
simple, uniaxial stresses. The addition is done component by component. 

Secondly, elasticity means full reversibility. We can load, unload and 
reload a material without incurring any permanent strain or hysteresis. 
Elasticity also means that the material's response is instantaneous. 
There is no time lag, no time or rate dependency. 

Experimentally observed behavior of composites follows closer to 
linear elasticity than nearly all metals and nonreinforced plastics. The 
assumed linear elasticity for composites appears to be reasonable. If we 
are to go beyond the linearity assumption, such as the incorporation of 
nonlinear elasticity, plasticity and viscoelasticity, the increased com­
plexity is beyond the scope of this book. 

For unidirectional composites, the stress-strain relations can be 
derived by the superposition method. We must recognize that two 
orthogonal planes of symmetry exist for unidirectional composites: one 
plane is parallel to the fibers; and the other is transverse to the fibers. 
Symmetry exists when the structure of the material on one side of the 
plane is the mirror image of the structure on the other side. The two 
orthogonal planes are shown in Figure l .  l 0, where the x-axis is along 
the longitudinal direction of the fiber while the y-axis is in the 
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X 

transverse direction. When the 
reference axes x-y coincide with the 
material symmetry axes, we call 
this the on-axis orientation. The 
stress-strain relation in this chapter 
is limited to this special case. The 
off-axis orientation will be dis­
cussed in Chapter 3. 

Figure 1. 10 Two orthotropic The on-axis stress-strain relation 
can be derived by superpositioning 
the results of the following simple 
tests: 

planes of symmetry of unidirectional 
composites. Axes x-y coincide with 
the longitudinal and transverse 
directions. This material symmetry is 
called orthotropic and on-axis. 

a. uniaxial longitudinal tests

The applied uniaxial stress and the resulting biaxial strain were shown 
in Figure l .9(a). The stress-strain curves for this test are shown in Figure 
I. 11, from which we can establish the following stress-strain relations:

where Ex 

1 -a
E X 

X 

(1.5) 

= Longitudinal Young's modulus, also designated E
L 

e 
= Longitudinal Poisson's ratio = ---1'.. 

ex 
(This is also called the major Poisson's ratio, and desig­
nated by vL r, v 1 2-, or sometimes v2 1.) 

. b4d' 

_______ .J 

Figure 1.11 Uniaxial longitudinal tensile test. A square 
will be deformed into a rectangle. 

stiffness of unidirectional composites 11 

b. uniaxial transverse tests

The applied uniaxial stress and the resulting biaxial strain were shown 
in Figure l.9(b ). The stress-strain curves for this test were shown in 
Figure 1.12, from which the following stress-strain relations can be 
established: 

where E
y 

V 

ex = -2 a = -v e 
E y y y 

y 

Transverse Young's modulus, also designated ET 

e 
Transverse Poisson's ratio = - .2. 

ey 

( 1.6) 

(This is also called the minor Poisson's ratio, and desig­
nated by vrL , or v2 1 or sometimes v 1 ; .) 

o; 

Figure 1.1 2 Uniaxial transverse tensile test. 

c. longitudinal shear test

We apply another simple state of stress, the pure shear, to our unidirec­
tional composite. This is shown in Figure 1.13. The resulting stress­
strain relation is: 

( 1. 7) 
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where Es = Longitudinal shear modulus 
(This is also called longitudinal-transverse shear modulus 
and designated by G LT or G 1 2 .) 

�t 

D
Os 

I 

€s 

Figure 1.13 Longitudinal shear test. A square 
is distorted into a parallelogram. 

By applying the principle of superposition, we can sum up the contri­
bution of each stress component in Equation 1.5, 1.6 and 1. 7 to the 
resulting strain components. The final stress-strain relation for our uni­
directional composite is: 

(1.8) 

This is the on-axis stress-strain relation of a unidirectional composite; 
i.e., the material is in its orthotropic symmetry orientation. Conven­
tional materials have the same functional relations. 

,These simultaneous equations can be repackaged in a matrix multipli­
cation table, �herein each row in the table is equal to the sum of 
products from each column and its column heading. This rule should be 
self-evident if we compare the first of Equation 1.8 with the first row 
of Table 1.4. This and all subsequent tables will be drawn in italics 
when matrix multiplication is in force. 
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table 1.4 
on-axis stress-strain relation for unidirectional 
composites in terms of engineering constants 

o; o; o; 

€x 
I -�

E; Ey

7 -�
Ey

€5 

All the material constants of the stress-strain relation shown in this 
table are called engineering constants. They are the familiar constants 
used for conventional materials with subscripts added to denote the 
directionality of properties. Many design formulas for structural 
elements are written in terms of engineering constants. Thus the use of 
engineering constants will often facilitate the use of composites for 
structural applications. This concession to the state-of-the-art design 
methodology, however, can lead to an unnecessarily complicated design 
procedure. In fact, engineering constants for composites can be clumsy 
and should be replaced by the components of compliance and stiffness. 
A change of notation from engineering constants in Table 1.4 to com­
ponents of compliance in Table 1.5 can be done by direct substitution. 

table 1.5 
on-axis stress-strain relation for unidirectional 

composites in terms of compliance 

o; o; o; 

€x Sxx �y 

€y Syx Syy 

Es �5 

The relations between these two sets of elastic constants are: 

s
xx 

1 S
yy 

1 sss 

1
-- -- --

E
x E

y 
E

s 

V
x 

V 
S

yx 
- sxy 

= -..2. 
E

x 
E

y 

( 1.9) 
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or conversely, 

E
x 

1 

Sxx 

E
y 

= 

S
yy 

V
x 

= -
S

yx 

sxx 

V
y 

-
Sxy 

S
yy 

( 1.10) 

Es 
1 

= 

sss 

From Equation 1.8 we can solve for stress in terms of strain for 
which we have the following equations: 

(1.11) 

wherem = [l-vxv
y

l-1 

To eliminate the clumsiness of engineering constants in this stress-
str,ain relation, we introduce components of stiffness in Table 1.6. 

table 1.6 
on-axis stress-strain relation for unidirectional 

composites in terms of stiffness 

� €y � 

o; Oxx Oxy 

Cy Oyx Oyy 

o; Qss 

The following relations exist between engineering constants and the 
, components of stiffness. 
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Qxx = mEx

Qyx 
= mvxE

y 
(1.12) 

Oss = Es 

or conversely 

E
x 

Qxx = 
m 

E
y 

= Qyy 

m 

vx = Oyx 

Oyy 

V
y 

= Qxy (1.13) 
Oxx 

E = Qss s 

where m = [i _ Q,y Oy,r
•

Qxx QYY 

We have seen three sets of material constants, any of which can 
completely describe the stiffness of on-axis unidirectional composites. 
The characteristics of each set is summarized in the following: 

• Stiffness is used to calculate the stress from strain. This is the basic
set needed for the stiffness of multidirectional laminates.

• Compliance is used to calculate the strain from sfress. This is the
set needed for the calculation of engineering constants. This is not
needed for the stiffness of multidirectional laminates.

• Engineering constants are the carryover from the conventional
materials. Old designers feel more comfortable working with the
engineering constants.

As stated earlier, from one set of constants we can readily find the 
other sets. They are all equivalent. There is a direct relationship be­
tween the stiffness and compliance. One is the inverse of the other. We 
will discuss the process of inversion later. 

l
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4. symmetry of compliance and stiffness

We wish to show that the coupling components of compliance and

those of stiffness are equal; or, in the terminology of matrix algebra,

that the compliance and stiffness matrices are symmetri_f. Since the

only coupling that we have seen thus far is the Poisson coupling, the

symmetry condition states that the Poisson coupling components are

equal, as follows: 

(1.14) 

We can demonstrate the validity of these equalities from the stored 

elastic energy in a body subjected to stress and strain. Let the stored 
energy at a point in the orthotropic body be 

( l .  15)

Substituting the stress-strain relation in terms of compliance from Table 

1.5 into Equation 1.15, 

We will recover the stress-strain relation by differentiation of this 

energy term: 

€ =
y 

(1.17) 

Matching the like constants between this set and those in Table 1.5, the 

only condition that satisfies both sets is 

(1.18) 
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By substituting the stiffness relations in Table 1.6 into Equation 1.15 
we can also show that 

( 1.19) 

The last two equations state the symmetry or reciprocal conditions of 

the Poisson coupling. A similar symmetry condition can be applied to 

engineering constants. From Equation 1.19, for example, we have 

vxEy = vyEx (1.20) 

or 

vx Ex 
( 1.21) ---

Vy Ey 

With these symmetry conditions, the number of independent constants 
for the on-axis, orthotropic unidirectional composite are reduced by 
one, from five to four in Tables 1.4 to 1.6. If additional symmetry 

conditions exist, the number of constants can be further reduced. 

Specifically, two such cases exist: 

o Square Symmetric Materials

If the longitudinal and transverse properties are equal, i.e.,

Qxx = QYY 

=E y 

we have a square symmetric material. But because of the addi­
tional relation in Equation 1.22, the number of independent con­
stants are three, one less than the orthotropic material. A cross-ply 

laminate is a square symmetric material in the plane of the lam­
inate. Many woven-fabrics are-also square symmetric; 

• Isotropic Materials

We know that isotropic materials have only two independent con­
stants because there is another relation among the three remaining

constants, i.e.,
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( 1.23) 

G 
E 

2 (I+ v) 

This relation is derived from the equivalence between the state of 
pure shear and that of equal tension-compression. This equivalence 
is only valid for isotropic materials. The derivation of this relation­
ship will be discussed later. 

In summary, the stress-strain relations which govern the stiffness of 
all materials have the identical form for unidirectional composites as for 
conventional materials. There is no additional terms or more complex 
relationship. The only difference is the number of independent con­
stants; four for composites versus two for conventional materials. But 
there are no conceptual and operational barriers that would make com­

posites intrinsically difficult to work with. In fact, once we understand 

composites, we automatically will understand conventional materials as 

special cases of composites. 

5. stiffness data for typical unidirectional composites

a. Measured engineering constants for a number of unidirectional

composites are listed in Table 1.7. The fiber volume fraction and 

specific gravity are also included. These constants are normally derived 

directly from simple tests. They are not coefficients of the stress-strain 
relations. The unit ply thickness is 125 x 10-6 meter. 

b. The compliance components for the same composites in Table l .  7
are listed in Table 1.8. These components are computed from Table 1.7 

using the formulas in Equation 1.9. The compliance components are 

the coefficients of the stress components in the stress-strain relation. 

We need this relation to go from stress to strain. 
c. The stiffness components for the same composites are listed in

Table 1.9. These components are calculated using the formulas in Equa­

tion 1.12. These components are needed to go from strain to stress. 

They are also needed to calculate the stiffness of laminated composites. 
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table 1.7 
enginee�ing constants, fiber volume and specific gravity of typical unidirectional
composites 

Ex Ey "x E, Vf Specific 

Type Material GPa GPa GPa gravity 

T300/5208 Graphite 
/Epoxy 181 10.3 0.28 7.17 0.70 1.6 

B (4)/5505 Boron 
/Epoxy 204 18.5 0.23 5.59 0.5 2.0 

AS/3501 Graphite 
/Epoxy 138 8.96 0.30 7.1 0.66 1.6 

Scotch ply Glass 

1002 /Epoxy 38.6 8.27 0.26 4.14 0.45 1.8 

Kevlar 49 Aramid 
/Epoxy /Epoxy 76 5.5 0.34 2.3 0.60 1.46 

table 1.8 
compliance components-Of typical unidirectional composites (TPa)-1

Type 5xx SYY sxy s,, 

T300/5208 5.525 97.09 -1.547 139.5 

B (4)/5505 4.902 54.05 -1.128 172.7 

AS/3501 7.246 111.6 -2.174 140.8 

&otchply 1002 25.91 120.9 -6.744 241.5 

Kevlar 49/Epoxy 13.16 181.8 -4.474 434.8 
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table 1.9 
, stiffness components of typical unidirectional composites (GPa) 

Type m Qxx Oyy 

T300/5208 1.0045 181.8 10.34 

B (4)/5505 1.0048 205.0 18.58 

AS/3501 1.0059 138.8 9.013 

Scotchply 1002 1.0147 39.16 8.392 

Kevlar 49/Epoxy 1.0084 76.64 5.546 

6. sample problems

a. find strain from stress

Given stress vector: ( 400,60, 15) MPa 

For compliance of T300/5208 from Table 1.8: 

5.525 (TPar 1 

= 97.09 (TPar 1 

= -1.547 (TPa)-1 

139.5 (TPar 1 

Oxy 

2.897 

4.275 

2.704 

2.182 

1.886 

Ou 

7.17 

5.79 

7.1 

4.14 

2.3 

(1.24) 

(1.25) 

Using stress-strain relation in terms of compliance, such as that in Table 
1.5: 

Ex 
= (5.525 X 400- 1.547 X 60) X 10-6 

= 2.117 X 10-3 

( 1.26) 
Ey 5.206 X 10-3 

Es 139.5 X 15 X 10-6 
= 2.092 X 10-3 
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If a different material is used, we only need to replace the compliance 
components in Equation 1.25 with different data. If the new material is 
Scotchply 1002, we can get the compliance from Table 1.8. 

5xx 25.91 (TPa)- 1 

syy = 120.9 (TPa)-1 

(1.27) 
sxy = -6.744 (TPar 1 

sss = 241.5 (TPar 1 

With the same applied stress as Equation 1.24, the resulting strain is: 

Ex = (25.91 X 400 - 6. 744 X 60) X 10-6 = 9.959 X 10-3 

Ey 
= 4.556 X 10-3 (1.28) 

241.5 X 15 X 10-6 
= 3.623 X 10-3 

Since the glass composite is less stiff than the graphite composite, the 
strain produced by the same applied stress is expected to be larger in 
the glass composite. If we compare the strain components by com­
ponenJs between Equation 1.26 and 1.28, the strain in the glass com­
posite is larger in two components, a:nd smaller in one. The moral of the 
story is· that biaxial stress and strain states are complex. Disciplined, 
analytic approach is sttaightforward and is definitely preferred over 
guesswork. Guessing is not reliable because it is difficult. to guess the 
result of a matrix multiplication. 

b. find stress from strain

This process is the inverse of the previous example. If we are given the 
strain in Equation 1.26 and apply it to a T300/5208 composite, the 
resulting stress must be calculated by using 

• Stress-strain relation in terms of stiffness, such as that in Table
1.6, and

• Stiffness components in Table 1.9,
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Qxx 181.8 GPa 

Qyy 
= 10.34 GPa

Qxy 
2.897 GPa

Qss = 7.17 GPa 

The resulting stress is: 

ax 
181.8 X 2.117 + 2.897 X 5.206 =400MPa

ay 
= 2.897X2.117+10.34X5.206=60MPa

as 
7.17 X 2.092 = 15 MPa 

(1.29) 

(1.30) 

Note that the original stress of Equation 1.24 has been recovered. If our 
composite is Scotchply 1002, we should use the stiffness components 
listed in Table 1.9 for this material: 

Qxx = 39.16 GPa 

Qyy 
= 8.392 GPa

Qxy = 2.182 GPa 

Qss = 4.14 GPa 

The resulting stress from the applied strain in Equation 1. 28 is: 

ax 
39.16 X 9.959 + 2.182 X 4.556 = 400 MPa 

ay 
= 2.182 X 9.959 + 8.392 X 4.556 = 60 MPa 

as 
= 4.14 X 3.623 = 15 MPa 

( 1.31) 

( 1.32) 

Note again that the original stress of Equation 1.24 has been recovered. 
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7. conclusions

We have shown that the stiffness of unidirectional composites relative 
to the material symmetry axes (axes parallel and transverse to the 
fibers) are dictated by four elastic constants. These constants are the 
coefficients of the various forms of the stress-strain relations. 

When the strains are the independent variables the stress-strain rela­
tions in terms of the components of the stiffness shall be used. When 
the stresses are the independent variables the stress-strain relations in 
terms of the compon�nts of the compliance shall be used. There is a 
one-to-one relation that exists between the stiffness and the compli­
ance. We can calculate the components of stiffness from those of the 
compliance; or we can just as easily compute the components of com­
pliance from those of the modulus. 

There is another set of elastic constants which we call the engineering 
constants. These constants are derived from measurements of simple 
tests. These constants are more familiar to the users of composites 
because these constants possess exact counterparts in isotropic mate­
rials. Again; of the engineering constants only four are independent. 
The symmetry condition that exists for the stiffness and compliance 
components is not applicable to the engineering constants. Again, a 
one-to-one relation or complete interchangeability exists among the 
engineering constants and the components of stiffness and compliance. 

The important issue is the functional form of the stress-strain rela­
tion for unidirectional composites. The form is exactly the same as that 
for the conventional isotropic materials. It is for this reason we believe 
that composite materials are conceptually as simple as conventional 
materials. 

For composite materials whose stiffness properties are not listed in 
this chapter, four independent constants must be obtained either by 
direct measurements or from appropriate sources. The process of deter­
mining the stresses and strains remain. If a woven fabric is used instead 
of the unidirectional composites comparable constants must be ob­
tained. The fabric is treated as a homogeneous material in the same 
fashion as the unidirectional composites are treated. In general, four 
constants are needed. If the fabric has a square weave; i.e., the proper­
ties along two orthogonal directions are identical, we will have a square 
symmetric material for which there are only three independent 
constants. 
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Finally, the directionally dependent material property is a unique 
feature of composite materials. All four independent material constants 
must be known. The stiffness of conventional materials, on the other 
hand, can be represented by the Young's modulus alone because the 
Poisson's ratio for isotropic materials is approximately 0.3. Further­
more, Poisson's ratios often appear with unity, such as m in Equation 
1. 11 and G in Equation 1. 23; small variations in Poisson's ratios often
have insignificant effect. For composite materials, Poisson's ratios are

not bounded and can have very significant effect. Young's modulus

alone is not sufficient to describe the stiffness of composite materials.
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,onerits of modulus and compliance for an aluminum 

ring independent engineering constants: 

E = 69 GPa; v = 0.3. ( l.33) 

1ponents of modulus and compliance of a square 
1farilll with the followina indeoendimt enaineerina 

8. homework prol

a. Find the com1
with the follo'"

What is the effect on the components if the Poisson's ratio is changed 
to 0.25? 

b. Find the con

symmetric ma

constants:

( 1.34) 

c. Find the resulting strain in the aluminum above from an imposed
stress vector ( 400,60, 15) MPa in Equation 1. 24. Apply the calculated
strain to the aluminum and see if the original stress vector is

recovered.

d. Repeat Problem (c) for the square symmetric material described in
Problem (b ).

e. Use the symmetry condition of Equation 1.20 and interchange the
two non-zero off-diagonal terms in Table 1.4. Show the condition for
apparent infinite stiffness in the x-direction under biaxial stress is:

( 1.35) 

Show the condition for infinite areal stiffness under plane hydro­
static pressure p is: 

( 1.36) 

f Find direct expressions for the compliance components in terms of 
the modulus components for an orthotropic material. Write down 
the modulus components in terms of the compliance components. 

g. Given two pieces of a unidirectional composite material joined in a

manner shown in Figure 1.14 determine, the deformed shape under
uniaxial stress. Is the deformed shape a, b or c? What principle is

involved?
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-

/ 

(a) 

? ? 

-

! �
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(b) (c) 

Figure 1.14 Possible deformed shapes of a 0/90 composite. 

h. The maximum stress criterion of a unidirectional composite states
that failure occurs when one of the equalities is met. The data are
those for T300/5208, with the assumption that tensile and com­
pressive strengths are equal.

(1.37) 
� 1500 MPa ¾40 MPa ¾ 68 MPa 

This criterion appears as a rectangle in stress space in Figure l .  l 5(a). 
It is not drawn to scale. Similarly, the maximum strain criterion 
states 

X 
€ ¾-x L' 

'�x

� 8.28 X 10-3 

y 
€ �­

y E 
y 

� 3.85 X 10-3 

s 
€ �­

s E 
s (1.38) 

¾ 9.42 X 10-3 

This is shown in strain space in Figure I. 15(b ). Use the linear ortho­
tropic stress-strain relations to draw to scale: (I) the maximum strain 
criterion in stress space, and (2) the maximum stress criterion in 
,strain space. 

CT., 
y 

y 

X 

Ox 

(a) 
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cy 

Ey 

X 

Ex

s-

(b) 

Figure I.IS Maximum stress and maximum strain failure criteria. 

i. The longitudinal shear stress/shear strain curve for most unidirec­
tional composites is nonlinear. A typical curve (not to scale) is shown
in Figure 1.16. The maximum stress Sand strain ( €; ) are indicated.
The linear approximation of the maximum strain can be based on the
tangent modulus in Equation ( 1.38). Show to scale for T300/5208
the maximum strain criterion in stress space similar to Figure
1. l 7(a), and the maximum stress criterion in strain space similar to
Figure l. l 7(b) for both the tangent and the maximum shear strains,
assuming the maximum shear is three times the tangent shear strain.

o; 

s 

s 

Es 

Figure 1.16 Longitudinal shear curve. 
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Figure I.I 7 Maximum stress and maximum strain failure criterion in 
the a

x 
- a

s 
plane. 
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nomenclature 

€; 
a; 

V 

v
x 

V
y 

Sub x
Suby 

Subs 

·= Young's modulus for isotropic materials
= Longitudinal Young's modulus of unidirectional components 

= Transverse Young's modulus of unidirectional components 

= Shear modulus for isotropic materials 

= Longitudinal shear modulus of unidirectional components 

= Dimensionless multiplying constant = [ l - v
x 

v
y 
r 1

= Stiffness components; i,j = x,y,s

= Compliance components; i,j = x,y,s 

= Displacement along the x-axis 

= Displacement along the y-axis 
= Stored elastic energy 
= Strain components; iJ = x,y,s 

= Stress components; i,j = x,y,s 

= Poisson's ratio for isotropic materials 
= Longitudinal Poisson's ratio 
= Transverse Poisson's ratio 

= Normal component along the x-axis 
= Normal component along the y-axis 

= Shear component in the x-y plane 



chapter 2 
transformation of 

stress and strain 

The change of stiffness of unidirectional composites as a function of 

ply orientation is a unique feature of composites. This change can be 

related to the orientational variations of stress and strain. We will derive 

the relations that govern these variations; namely, the transformation 

equations. There are three formulations for the transformation; viz., the 

conventional power functions, the double angle functions, and the 

invariant functions. Each formulation has its unique characteristic and 

is useful for special purposes. All three formulations are equivalent and 

will yield the same answer. 

31 
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1. background

Up to this point, we have dealt only with the stiffness of unidirectional 
composites in their material symmetry axes, as shown in Figure 2.1. In 
this reference coordinate system, we call this type of symmetry ortho­
tropic; see Figure I. IO for graphic illustration. General orthotropic con­
figuration occurs when the ply orientation is different from O or 90 
degrees. This is shown in Figure 2.2. We also call the latter configura­
tion the off-axis as distinguished from the on-axis in Figure 2.1. 

Figure 2.1 Material sym­
metry axes of a unidirec­
tional composite. The x-axis 
is along the fiber and is in the 
longitudinal direction. This 
on-axis configuration is 
called orthotropic. 

Figure 2.2 Off-axis or 
generally orthotropic 
configuration of a uni­
directional composite. 
Counterclockwise rotation 
of the ply-orientation is 
positive ;clockwise rotation, 
negative. 

There are several reasons that we need to know how stress and strain 
can be expressed in different orientations of the coordinate axes. As the 
angle varies in Figure 2.2, the components of stress and strain will 
change following prescribed patterns. This variation is called the trans­
formation equation of stress and strain. The state of stress or strain 
remains the same, independent of the coordinate system, but the mag­
nitude of its components change. 

In conventional materials, physical properties do not change with 
reference coordinates. This class of materials is isotropic. The trans­
formation of stress or strain has no special meaning or utility with the 
exception of two special orientations; viz., the principal axes where the 
shear component vanishes, and the maximum shear orientation which is 
45 degrees away from the principal axes. These special orientations are­
useful for conventional materials because a number of failure theories 
can be applied using the maximum principal stresses or the maximum 
shear stresses. 
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In composite materials, we need to know the transformation equa­
tions of stress and strain for a number of reasons. 

First, the properties of composites are not isotropic. The state of 
stress or strain existing relative to the on-axis configuration is important 
in determining the stiffness and strength of composite materials. We can 
then use the transformation equations, for example, to find the on-axis 
stress from the applied stress in an off-axis orientation or vice versa. 

Secondly, transformation equations are needed to determine the 
principal stresses or strains. The same transformation equations also 
define the invariants of stress and strain. The concepts of principal 
axes and invariants are fundamental for the understanding of composite 
materials. The same concepts can be extended to those for stiffness and 
strength. They will be explained later. 

Finally, transformation equations for stress and strain, together with 
the on-axis stress-strain relations of Chapter 1, can be used to determine 
the off-axis compliance and modulus of unidirectional composites. The 
sequence of operations is illustrated in Figure 2.3 for the compliance 
and described as follows: 

• The originally applied stress to an off-axis composite is shown in
(a), expressed in components 1,2,6.

• If we apply stress transformation to the components of (a) in the
1-2 system, we will get (b), the same state of stress but expressed
in the different components of the on-axis, x-y system; i.e., in
components x,y,s. This is a positive stress transformation.

• Since we know the relations between the on-axis stress and strain
from Table I. 5, we can determine the induced strain in the
on-axis, x-y system, which is shown in (c).

• We can then apply inverse strain transformation to get the strain
components in the off-axis, 1-2 system from the on-axis, x-y

system-; i.e:, from-(c) to (d) in Figure 2.3. This is a negative strain
transformation. Then we have the induced strain in (d) as the
result of the applied stress in (a), both of which are in the off-axis,
1-2 system.

We can go from (a) to (d) directly if we know the off-axis stress­
strain relation. This can be derived by merging the three steps in this 
figure into one. 

If the imposed strain is given in Figure 2.3(a) instead of the stress, 
the induced off-axis stress can be determined by a very analogous 
method. The off-axis modulus of a unidirectional composite can then 
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r,: s,, �-
(d) (a) ---- (b) i,;=x,y,s (c) ---

Off-Axis On - Axis On -Axis Off-Axis 
Stress 

l 
Stress Strain 

i,j::/,2,6 

Stram 

j 

Figure 2.3 Determination of the off-axis compliance: 

From (a) to (b): use positive stress transformation. 
From (b) to (c): use the on-axis stress-strain relation in 

compliance. 
From (c) to (d): use negative strain transformation. 

be derived from this process. The sequence of operations is illustrated 
in Figure 2.4. 

• From off-axis strain to on-axis strain, use positive strain trans­
formation. This is the operation from (a) to (b ).

• From on-axis strain to on-axis stress, use the on-axis stress-strain
relation in modulus, as in Table l .6. This is the operation from (b)

to (c).
• From on-axis stress to off-axis stress, use negative stress transfor­

mation. This operation is from (c) to (d).

Alternatively, we can go from (a) to (d) directly if we know the 
off-axis modulus. 

The scope of this chapter is to show stress and strain transformation. 
The formulas of the transformation are simple and easy to use, but the 
most critical part of the operation is the sign convention. As we have 
repeatedly mentioned, signs are critical for the study of composites. 
Such emphasis is not called for in the case of conventional materials 
because their behavior is often insensitive to signs and directions. 

The notations associated with coordinate transformation are arbi­
trary. The components of the original versus the transformed, the old 
versus the new, the 1-2 versus the x-y systems, or the on-axis versus the 
off-axis are based on a matter of judgment, and certainly vary from 
author to author and from situation to situation. Only the definitions 
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r,.
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o,, r,; 
(a)---• (bJ i;J

::x,y,s (c) -
.
--- (d) 

O ff-Axis On-Axis On-Axis Off-Axis 
Strain Strain Stress Stress 

l J 
i;j::f,2,6 

Figure 2.4 Determination of the off-axis modulus: 
From (a) to (b): use positive strain transformation. 
From (b) to (c): use the on-axis stress-strain relations in 

modulus. 

From (c) to (d): use negative or inverse stress transformation. 

of the on-axis and the off-axis are normally fixed. The key issue is the 
initial definition such as that shown in Figure 2.2, where the reference 
coordinates and the ply orientation are illustrated. This choice is ma�e 
for convenience because most transformations for the stress and stram 
in composite materials go from the off-axis to the on-axis orientati?n.
But these are exceptions, such as the negative or inverse transformation 
between step (c) and step (d) in Figure 2.3 and 2.4. 

2. transformation of stress

Now we would like to derive the relations between two sets of stress 
components; one set expressed in the 1-2 system, and the other in the 
x-y system. The latter is rotated from the former by a positive angle as
shown in Figure 2.2 and repeated in Figure 2.S(a). In Figure 2.S(b) and
(c), the two sets of stress components, one with numerical_ su�scripts,
the other with letter subscripts, are also shown. The arrows md1cate the 
direction of the positive component, following the sign convention in 
Figure 1.6. 

The transformation of stress can be derived from the balance of 
forces. Consider a free-body diagram shown in Figure 2.6(a) which is a 
wedge slicing across fibers in a typical infinitesimal unit area like that in 
Figure 2.S(b ). The sides of this wedge have the following lengths 
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(a) 
(c} 

Figure 2.5 Stress transformation: changes in stress 

components due to coordinate rotation or 
transformation. 

(a) Relation between the 1-2 and x-y systems.
Counterclockwise rotation is positive ..

( b) The off-axis or old stress components, with
numerical subscripts.

(c) The on-axis or new stress components, with

letter subscripts.
All arrows for the components are pointing in a 
positive direction. 

(a) 

la; 
_Et� 
0.]-o,-

� Os 

(b) 

Figure 2.6 Free-body diagram for the 

balance of stress components. The com­
ponents of the on-axis, x-y coordinates 
can be expressed in terms of those of the 
off-axis, 1-2 coordinates. All stress com­

ponents shown are derived from Figure 
2.S(b) and (c).

relative to unity hypotenuse; also shown in Figure 2.6(a): 

m = cos0, n = sin0 (2.1) 

The forces exerted on the sides of this triangular free body, shown 
only schematically in Figure 2.6(b ), are the products of the stress

components multiplied by the appropriate lengths of the sides. 
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• Balance of horizontal (along the I-axis) forces yields:

(2.2) 

• Balance of vertical (along the 2-axis) forces yields:

(2.3) 

Keeping in mind that the original 1-2 components are given, and we are 
looking for the new x-y components, we can find the unknown com­

ponents by solving simultaneously Equations 2. 2 and 2.3 as follows: 

(2.4) 

(2.5) 

It is assumed here that the off-axis stress components are normally 
given and the on-axis components are desired. This is usually the case 

when we study composite materials. It is important to know that Equa­
tions 2.4 and 2.5 are applicable independent of material properties. The 
description of the on-axis and off-axis is made for sake of convenience 
and is not intended to restrict the transformation equations to a 
specific material. 

We can now repeat the process by slicing a wedge parallel to fibers in 

the unit area as in Figure 2.7. On this plane the normal stress com­

ponent is acting transversely to the fibers. The free body diagram for 
this wedge is shown in Figure 2. 7(b ), from which the following rela­

tions can be established: 

• Balance of horizontal forces.yields:

(2.6) 

• Balance of vertical forces yields:

(2.7) 



38 introduction to composite materials 

(o/ 

Figure 2. 7 Free-body diagram for the balance 
of stress components. This is the same as Figure 

2.6 except the new plane is sliced along the fibers. 
Positive components are derived from Figure 2.S(b) 
and (c). 

If we solve the last two equations simultaneously, we get 

· (2.8)

(2.9) 

Note that the shear stress expressed in Equation 2.9 is the same as that 
in Equation 2. 5 as it should be. Thus, the three equations for stress 

transformation are Equations 2.4, 2. 8 and 2. 9. These equations can be 
packaged in a matrix multiplication table as follows: 

table 2.1 

stress transformation equations in 

power functions 

<7i o; 

q; m2 n2 

o; n2 m2 

Os -mn mn 

m = cos t9 , n = sin t9 

o; 

2mn 

-2mn

m2-n2 

The transformation equations above are expressed in terms of second 
power of sines and cosines. We can rewrite these equations using double 

angle trigonometric identities a.s follows: 
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2mn = sin20 

= l-l cos20
2 2 

m2 
- n2 

= cos20 

(2. 10) 

When we substitute these identities into the equations in Table 2.1, we 

get 

a = 

y 
(2.11) 

Introducing a notation commonly used in photoelasticity, we have 

or (2.12) 

where super bars refer to the on-axis orientation. We can now express 

the stress transformation equations in terms of double angles and the 

notation in Equation 2.12. This new formulation is shown in a matrix 

multiplication table as follows: 

. I 
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table 2.2 

stress transformation in double angle 

function - I

p q 

o; I cos26 

o; I -cos2tl

o; -sin2tl 

r 

sin26 

-sin26

cos2tl 

ll is positive in counter-clockwise 
rotation 

There is an alternative arrangement for Table 2.2 where the column 

headings and the trigonometric functions are interchanged. This 

arrangement is useful for certain ply orientation such as 45 degrees, in 

which case the column with the cosine function vanishes. 

table 2.3 
stress transformation in double angle 

functions - II

I cos26 

o; p q 

o; p -q

o;' r 

sin2tl 

r 

-r

-q

Either table can be used. The common feature is the first column, 

where the influence of the angle of rotation does not exist. The con­

stant p is called an invariant of this coordinate transformation. If we 
add the first two rows of the tables above, we get 

(2.13) 

Thus the sum of the two normal stress components remain constant, 
independent of the angle of rotation or ply orientation. We call this 
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invariant the first-order invariant for stress transformation; i.e., 

f=p=p 

There is a second-order invariant that we can show as follows: 

From Equation 2.12 

1 -q2 + ,.2 = _ [ 0 
_ 

0 
] 2 + 02 

4 X y S 

From Table 2.3 

( 2.14) 

+ r2 cos2 20 - 2qrsin20cos20 + q2 sin2 20 (2.15) 

= q2 + ,2 

This is another invariant because the quantity remains the same for any 

value of angle or ply orientation. We label this second-order invariant as 

R2 = q2 + ,-2 = q2 + ,2 (2.16) 

where R is the radius of the Mohr's circle for stress transformation. The 

geometric relationship of Equation 2.16 is shown in Figure 2. 8. Also 

shown in this figure are the phase angle and the following trigonometric 

relations: 

q = Rcos20
0 

r = Rsin20
0 

0 = 
0 

1 
t 

-1 r 1 . -1 r 1 _ 1 q 
- an - = - sm - = - cos -
2 q 2 R 2 R 

(2.17) 

Thus the three stress components that characterize the state of plane 
stress can be represented by at least three sets of variables for a given 
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r 

I 

Figure 2.8 Geometric relations of second-order stress 
invariant R and Mohr's circle. The location of the center 

is specified by the first invariant /. 

coordinate system; i.e., for a given angle of orientation, say, 0. 

• First set: Stress components 1,2,6.
• Second set: p, q, r in accordance with Equation 2.12.
• Third set: Invariates / and R and the phase angle, defined in

Equations 2.14, 2.16 and 2.17, respectively. 

Similarly, the stress transformation can be formulated in terms of each 
of the sets above. We have done the first two; the third set can be used 
to derive the transformation equations by substituting Equations 2.14, 
2.16 and 2. 1 7 into the appropriate column headings in Table 2. 2, the 
transformation in terms ·of p, q, r.

I+Rcos2 [0-0
0

] 

(2.18) 

-Rsin2 [0-0
0

] 

where I = 

R = 
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1 
+ 02] -[a, 

2 

Jq2 
+ r2 ✓¼[al -a2l2+a6

2 

1 _1 
q 1 . _1 r 1 t -1 r- cos - = - sin - = - an -

2 R 2 R 2 q 

(2.19) 

This invariant formulation of the transformation equations can be 
shown in a matrix multiplication table as follows: 

table 2.4 

stress transformation in invariant functions 
� 

I R 

o; I cos 2(11-11
0

/ 

o; I - cos2(11-11ol 

'f - sin2/l1-l10)

We have seen that transformation equations can be written in different 
sets of functions. There are advantages and disadvantages associated 
with each set. From the standpoint of numerical calculation, the in­
variant functions in Table 2.4 may be the easiest because there are only 
two columns in this table, instead of three columns as in Tables 
2. I-2.3. The Mohr's circle representation is also based on the invariant
functions. But the direction of rotation, the magnitude and the sign of
the phase angle can be troublesome. Care must be exercised in applying
the_ last line of Equation 2.1 7 or 2.19 to avoid a 180 degree out of
phase mistake.* Inverse trigonometric functions are not single-valued;
they repeat themselves at fixed intervals. The double angle functions of
the stress transformation in Tables 2.2 and 2.3 are better in the sense
that the signs are correctly built in. The classical power functions
formulation in Table 2.1 appears most frequently in current textbooks.
This formulation is most convenient to use when one or two of the
stress components are zero.

*The same care is required for the conversion of rectangular to polar coordinates. 
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3. numerical examples of stress transformation

Problem: Given stress in the 1-2 system 

a;= (9,3,4) (2.20) 

Find stress components in the x-y system for 0 = 45 degrees. The 
two reference coordinates are shown in Figure 2.9 (same as Figure 2.5). 

y\ j 
Oz o; La: 

��/ 

' Os 

-JI]l-�-.;7i
� Cx 

¥I>;::.,-\-.
(a) (b) 

r,: 
(c)

Figure 2.9 Stress transformation: changes in stress 
components due to coordinate transformation. 

Solution: 
(I) From the power function transformation in Table 2.1.

cos0 = sin0 = _I_

=.!_(9+3+2X4)=10
2 

=.!_(9+3- 2X4)=2
2 
I = -(-9 + 3 + 0) = -3
2 

(2.21) 

(2.22) 
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(2) From the double angle function transformation in Table 2.3:

cos20 = 0, sin20 = I (2.23) 

I 
p = -(9+3)=6

2 

I 
q = -(9- 3)=3

2 
(2.24) 

r = 4 

Then, 

or 

or 

ax = 6 + 4 = 10 

a
y 

= 6- 4=2 

as -3

(3) From the definition of invariants in Equation 2.19:

I p=6 

..J q2 + r2 =..J 32 + 42 
= 5 

0
0 

= ½ tan- 1 f = 26.56 degree 

= .!. sin-• .± = 26.56 degree 
2 5 

.!. cos- 1 i. = 26. 56 degree 
2 5

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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From the invariant function transformation in Table 2.4 for 0 = 45 
degrees, we have 

6 + Scos2(45 - 26.56) = 10 

ay = 6 - Scos2(45 - 26.56) = 2 

as = -5sin2(45 - 26.56) = -3 

As expected all three formulations yield the same answer. 

(2.29) 

By virtue of symmetry, four combinations of stress components are 
closely related, each corresponding to a phase angle. This is shown in 
the Mohr's circle in Figure 2. 10. 

r � 

26/
2

) 

26,,(/) 

(!!,!,OJ 
q o; .� 

(4) 
26,, (10,2) 

(3;9,-4) (9,3,-4) 

(a) 
. 

(b) 

Figure 2.10 Four possible combinations of components of stress. For a given 
Mohr's circle (or a state of stress) the magnitude and sign of the stress 
components depend on the signs of q and r in Equation 2.24. Each combina­
tion is associated with a phase angle. The relations between the four phase 
angles are shown in this figure. The components for each phase angle are 
also shown. 

Care must be exercised to distinguish among these combinations. 
They are repeated here for emphasis and shown in Figure 2.1 0(b ). 

0<0 = 26.56, ai = (9,3,4) 
0 

0(2) 63.44, ai = (3,9,4) 
0 

(2.30) 
0(3) = -63.44, 

0 ai = (3,9,-4) 

0 (4) 
0 

= -26.56, O; = (9,3,-4) 
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Note that the first phase angle is the given orientation for this present 
state of stress. Note relationships between phase angles; e.g., 

0(1) + 0(2) = 90 
0 0 

0(3) + 0<4) = -90 
0 0 

0(1) = -{J(4) 
0 0 

0(2) 
= 

-0(3) 
0 0 

(2.31) 

In spite of the multivalued phase angles for the invariant formulation 
of the transformation, the phase angle has one important feature. When 
the angle of rotation 0 is equal to a phase angle, say 26.56 degrees from 
Equation 2.30, we have from Equation 2.29: 

01 =6+5=11 

(2.32) 

This combination of stress components are also shown in Figure 
2.1 0(b ). This orientation is called the principal direction. In this 
orientation, the shear stress is zero, and the normal stress com­
ponents reach maximum and minimum values. They can be determined 
immediately from the two invariants: 

(2.33) 
au = amin = I - R

where stress components are the principal stress components. See 
Figure 2.11 for graphical illustration of various invariant quantities. 
Thus, the principal direction is derived from 

(2.34) 
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r r 

----I-----, 

-----0.i -----..,

Figure 2.11 Principal stress components. They are 
the maximum or minimum values in the Mohr's 

circle. 

There is another important orientation; i.e., 45 degrees from the prin­
cipal direction, or when 

(2.35) 

At this angle, we have 

01 
= I = 6 

02 
= I = 6 (2.36) 

o6 
=-R =-5

Herc, both normal stress components are equal to the first invariant; 
the shear stress component reaches its minimum value. The latter would 
have been the maximum shear stress if -45 degree is used in Equation 
2.35. 

As a final emphasis on the importance of the sign of angles, Figure 
2. I 2 shows the consequence of a sign error. A positive transformation
from the 1-2 axes will result in the material symmetry axes, designated
I 

+

_2
+ 

axes. A sign error will result in the i--T axes which are 20 orienta­
tion away from the correct answer.
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r 

Figure 2.12 Positive and negative 
angles of rotation. Guesswork is 
not good enough for composites. 
Keep track of the signs. 

4. transformation of strain

Strain transformation is as important as stress transformation. An iden­
tical figure to Figure 2.5 can be drawn for the strain components. This 
is done in Figure 2.13. 

2 

Y\ j A/ 
� +Ill 

(a) 

t''2 
-E 

�' 6 €. 
-

_1 

�� 

• 
(b) 

€y 

�

€x 

/I(:.,-\ 
-,;+ 

(c) 

¼" 

Figure 2.13 Strain transformation. Changes in strain 
components due to coordinate rotation or 
transformation. 

(a) Relation between the 1-2 and x-y systems.
Counterclockwise rotation is positive.

(b) The off-axis strain components, with numerical
subscripts.

(c) The on-axis strain components, with letter
subscripts.

All arrows for the components are pointing in a 
positive direction. 

Like the definition of strain itself, strain transformation is purely geo­
metric and involves no material property or balance of forces. Using the 
notation shown in Figure 2.13, the off-axes orientation is the 1-2 

system, and the on-axis, the x-y system. We will now derive the strain 
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transformation relations from the strain-displacement relations shown 
in Equation 1.1 and 1.4 and repeated as follows: 

au. 
ex ax 

av 
(2.37) ey = -

a_v 

es = 
�+au 
ax ay 

Since both displacements u and v and coordinates x and y are vectors, 
and are directionally dependent quantities, we only need to find the 
relationship between the primed and the unprimed components of a 
vector, shown in Figure 2.14(a) and (b), respectively, 

X mx' + ny' 

(2.38) 
y = -nx' +my'

conversely, 

x' = mx -ny 

(2.39) 

y' = nx + my 

where, as before, 

.' m = cos0, n = sin0 

From Equation 2.39, we can get the following by partial differ­
entiation: 

ax' ax' a , a , -=m -=-n L=n ..L=m 
ax ' ay ' ax ' ay 

(2.40) 

The relations between displacements in the primed and unprimed 
coordinates are identical to those in Equations 2.38 and 2.39 because 
all quantities are vectors. We can simply write the following by re-
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(a) (b) 

Figure 2. I 4 Coordinate systems between the primed or 
numbered and unprimed axes. 

(a) To go from primed to unprimed, 0 is positive.

(b) To go from unprimed to primed, 0 is negative.

placing x, y, x', y', by u, v, u', v', respectively: 

u - mu'+ nv'

v = .;_nu' + mv' 

Conversely, 

u' = mu -nv 

v' = nu + mv 

(2.4i) 

(2.42) 

Now we are ready to derive the strain transformation equations. From 
Equation 2.3 7 

(2.43) 

By chain differentiation 

(2.44) 
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From Equation 2.40 and 2.41 

where 

m-+n- m+ m-+n- n [ au' av' ] [ au' av'] 
ax' ax' ay' ay' 

au 
I 

I 

E
x 

ax 
I 

I av' 
E
y 

= 

ay 
I 

I au' av' 
€ = + 

s ay' ax' 

(2.45) 

(2.46) 

Here primes are added to all the variables in the definitions of strains in 
Equation 2.37. We can do this because the relationship is invariant; i.e., 
the relationship does not change from coordinates to coordinates, and 
is valid for all coordinate systems. Note that the strain transformation 
in Equation 2.45 is very similar to the stress transformation in Equation 
2.4 except the factor 2 is missing in the shear term. This difference 
comes about from the use of engineering shear strain as shown in Table 
1.3 and-Equation 1.4. 

By an identical process as that used in the derivation of Equation 
2.45, we can show 

This is summarized in a matrix multiplication table as follows: 

table 2.5 

strain transformation equations in power 
functions 

e, €z €6 

e
x m' n' mn 

€y nz mz -mn

€5 -2mn 2mn m2-n2 

(2.4 7) 

(2.48) 
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We can express the transformation relations in terms of double angle 
and invariant functions as we did for the stress transformation. Com­
parable to Tables 2. 2 and 2.3 for stress transformation, we can show 
strain transformation in double angle functions in Tables 2.6 and 2. 7, 
respectively. 

where 

table 2.6 

strain transformation in double angle 
. function --1 

p q 

€x I cos2ll 

r 

sin2ll 

€y I -cos2ll -sin2ll

€5 -2sin2ll 2cos26 

table 2.7 

strain transformation in double angle 
functions - 11 

I cos2ll 

ex p q 

7 p 
-

q 

� 2, 

sin2ll 

r 

-, 

-2q

(2.49) 

Note that the definition of r is different from that for the stress 
transformation in Equation 2.12. The use of engineering shear strain is 
responsible for the difference. 

The invariant function comparable to Table 2.4 for the stress trans­
formation can be derived in a similar fashion and the results are listed in 
a matrix multiplication table as follows: 



54 introduction to composite materials 

where: I

R 

table 2.8 

strain transformation in invariant functions 

I 

t"x I 

€y I 

€s 

l 
I =-[e i +e 2 l e 

2 

R 

cos2(fl-flo) 

-cos2(fl-flo)

- 2sin2 (fl-60 )

1 - 1 q I . -i r I - 1 r- cos - = - sin - = - tan -
2 R 2 R 2 q 

(2.50) 

The advantages and disadvantages of each formulation for the strain 
transformation are similar to those for the stress transformation. The 
double angle formulation appears to provide the best compromise and 
is recommended for general usage. This will be our choice for the 
balance of this book. 

5. numerical examples of strain transformation

a. Problem: Given a state of strain in the 1-2 system

ei = (9,3,4) X 10-3 (2.51) 

Find a transformed strain for 0 equal to 45 degrees. See Figure 2.15. 
Solution: From Table 2. 7, cos20 = 0, sin20 = 1 

p = .!_ ( 9 + 3) = 6 X 10-3

2 

q = .!_ ( 9 ·- 3) = 3 X 10-3 

2 

r = _± = 2 X 10-3

2 

(2.52) 
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Then 
6 + 2 = 8 X 10-3

e
y 

= 6 - 2 = 4 X 10-3

e8 
= -2 X 3 = -6 X 10-3 

(2.53) 

Note that the transformed strain is quite different from the trans­
formed stress of (10,2,-3) from Equation 2.25. The factor of 2 in the 
engineering shear strain is responsible for this dramatic difference. 

Y\ j /4x
(z €y 
- €. 

�,, 

� 

+
f

i -,�'� 
/\:;.,- \+ 

r,.
+ 

(a) (b) - (c J

Figure 2.15 Strain transformation. To go from (b) to 
(c) is a positive transformation when the angle of
rotation is positive, as in Problem a. The negative or
inverse transformation in Problem b is in effect when
the angle is negative. (This figure is the same as
Figure 2.13.)

b. Problem: Try inverse transformation for strain in Equation 2.53

ei = (8,4,-6) X 10-3 

Find strain at -45 degree rotation. 

Solution: From Table 2.7, cos20 = 0, sin20 = -1

p = 

q =

.!_(8 + 4) = 6 X 10-3 

2 

.!_(8 - 4) = 2 X 10-3

2 

(2.54) 

(2.55) 
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Then 

e, 6 + 3 = 9 x 10-3 

6 - 3 = 3 X 10-3 

Note that the original strain in Equation 2.5 l is recovered. 

6. graphic interpretations of stress-strain relations

(2.56) 

The stress-strain relations in Chapter 1 used components of stress and 
strain as the variables. If we use their linear combinations p,q,r, as 
defined by Equations 2.12 and 2.49, we can write the equivalent stress­
strain relations for an on-axis, orthotropic material as follows: 

table 2.9 
equivalent on-axis stress-strain relation in terms 
of compliance 

Po- qO" 'a-

� 
I 

2 (Sxx +Syy +2S
xy

l I 

2tSxx-Syyl 

qe 
I 

2(Sxx-Syyl irsxx+Syy-2Sxyl 

� 
I 

2Sss 

table 2.10 
equivalent on-axis stress-strain relation in terms 

of modulus 

Pe 'ii, r, 

Po- -jfQxx+Oyy+20xyl -jroxx-Qyyl 

qO" 1roxx-Qxyl 
I 

2(0x/Qyy-20xyl 

rcr 2()ss 
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If the material is isotropic, we have additional relations among the 
components of compliance and modulus, such as those in Equation 
l .23, Tables 2.9 and 2.10 become:

table 2.11 
equivalent stress-strain relation of isotropic 
materials 

Po- qO" 'a-

P.. Sxx + Sxy 

qe Sxx-Sxy 

� Sxx -Sxy 

P, q, r, 

Po- Oxx + ()xy 

qq- Oxx-Oxy 

ro- Oxx-Oxy 

All off-diagonal terms vanish; all the stress-strain combinations are un­
coupled. The Mohr's circle for stress and strain are related as follows: 

Pe le = (Sxx + Sxy )la 

R € = ✓ q2 + ,2 = (Sxx -Sxy 
)R a € € 

(2.57) 

0 € 
= ea 

Similarly 

Pa = 1
a = (Qxx + Q;y 

)le 

R a 
= (Qxx -Qxy )R e (2.58) 

() a = 0€ 
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The last relation is the phase angle which remains the same as we go 
from the stress to strain space or vice versa. The principal axes of stress 
and strain are coincident. The two Mohr's circles, shown in Figure 2.16, 
are related by two independent constants or scale factors. We expect 
this in isotropic materials. 

Figure 2.16 Graphic representation of stress-strain relation of an iso­

tropic material. The phase angle remains the same. The location and 

size of the Mohr's circles are different. 

If our material is square-symmetric, the equivalent stress-strain rela­
tions must be modified because the relation of Equation 1.23 is no 
longer valid. The new stress-strain relations are shown as follows: 

table 2.12

equivalent on-axis stress-strain relations for 

square-symmetric materials 

Po- 'iio- 'tr 

P.- 5xx +Sxy 

QE Sxx-Sxy 

rE 
2 5ss

PE QE ,;. 

Po- Oxx + Oxy 

QIT Oxx-Oxy 
-

rlT 2055 
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In place of the relations in Equations 2.57 and 2.58, we have: 

Similarly 

I t -1 - an

J
- [ 2Q88 -J 2 

q2 
+ -----r e 

Qxx -Qxy e 

0 
_ 1 

t 
_1 ss re - - an ... [ 2Q -] 

a 
2 Qxx - Qxy qe 

(2.59) 

(2.60) 

Thus, the simple scaling applies to the location of the Mohr's circle 
only. The radii of the Mohr's circle depend on the specific material 
constants. All three independent constants are involved. Explicit rela­
tion between the two radii of the Mohr's circles does not exist. We can 
recover the isotropic relations in Equations 2.57 and 2.58 if the relation 
in Equation l .  23 is invoked. The phase angle also changes as we go 
from one Mohr's circle to another. The principal axes of stress will not 
be coincident with those of strain. 

If we consider an orthotropic material, the rel�tions in Tables 2.9 
and 2.10 show that the location of the Mohr's circle as specified by the 
first invariant is now coupled with other components of stress (q) and 
other components of the compliance. The location of the circle in the 
Mohr's strain space, for example, depends on the specific material and 
the stress combinations of p and q. There is one special case where the 
principal axes of stress and strain coincide for orthotropic or square 
symmetric material. This occurs when the material symmetry axes or 
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the on-axis orientations coincide with the principal stress or strain axes. 

If we start with zero stress and gradually increase all three com­
ponents of stress by the same proportion, this is called proportional 
loading. The unit vector of stress remains constant. The lines of loading 

can be shown as a straight line in the Mohr's circle space. These loading 
paths are added to the circles in Figure 2.16 and shown in Figure 2.17. 

For nonisotropic material, the phase angles will be different. The prin­
cipal axes will therefore be different between the stress and strain. The 

concept of loading path is important to the design and sizing of com­

posite materials. For structures, multiple loading conditions often exist. 

Multiple loading paths and paths other than proportional loading are all 

possible. Graphic illustrations in Figure 2. l 7 can increase understanding 

of the basic concept in design. 

PROPORTIONAL 

STRESS LOADING 
ORTHOTROPIC 
STRAIN PATH 
.,, ....... 

,,, 

Figure 2.17 Loading paths of stress and strains in Mohr's circle space. 
The strain paths are dependent on elastic moduli of the material. 

7. conclusions

Stresses, strains and their transformation properties are familiar con­

cepts. For composite materials added considerations must be given. The 
direction of rotation or the sign of the ply orientation must be observed 

faithfully. While guesswork is often harmless for the conventional 
material because material behavior is often insensitive to the direction 
of rotation, we must develop strict rules in keeping track of the sign of 

the angles in composite materials. 

The notations which we have used in this chapter is arbitrary to the 

extent that a number of systems could be followed. It is important to 
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distinguish the reference coordinate axes from the material symmetry 

axes, the new from the old coordinate axes, etc. There is no one uni­

versally acceptable system of notation. 

The transformation of stresses is independent of materials. The rela­
tions we used in this chapter are from the off-axis orientation to the 
on-axis orientation. They are most frequently encountered working 

with composite materials. The transformation of strain is purely geo­

metric. No material properties are involved. This should not be con­
fused by the fact that the resulting strain from an applied stress does 

depend on the type of material. A stiffer material will result in less 

strain for the same applied stress. The strain so produced is dictated by 

the stress-strain relation and the magnitude of the elastic constants. But 
the transformation of strain is purely geometric for a given state of 

strain. In the next chapter the transformation of stress and strain will 

provide the basis for the derivation of the transformation of the 
modulus and compliance of unidirectional composites. 

The concepts of the principal directions of stress and strain are 
important to composite materials. Like the sign of ply orientation, the 

sign of the orientation of the principal axes must be treated with care. 

The notation and definition such as that in Figures 2. 2, 2.10, et al. 
must be kept in mind in order to avoid bad errors. 
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8. homework problems

a. Express stress transformation from the p-q-r to the p'-q'-r', where the
primed quantities are the linear combinations of the stress com­
ponents in the new, transformed axes.

table 2.13

transformation of stress 

Pu q(T 

P. I 
(T 

I 

Q/,. cos26 

r. I 

(T 
-sin26

'o-

sin26 

cos26 

What is the relation between this table and the coordinate transfor­
mation in Equation 2.38 or a rigid body rotation in the q-r space? 
Show this in a figure and compare it with Figure 2.14. 

b. Express strain transformation in terms of the linear combinations of
the strain components, analogous to the stress transformation in
Problem a. Why are the coefficients identical?

table 2.14 
transformation of strain 

Pr 

P.' E I 

qi 
E 

QE 

cos26 

r. I 
E -sin26

� 

sin26 

cos26 

c. Simple states of stress are those with only one nonzero stress com­
ponent such as

(2.61) 
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Show these states in solid dots in the Mohr's circle space as in Figure 
2.11. If each of the applied stress above is equal to l 00 MPa, find the 
Tesulting strain components and show the strain to scale in the 
Mohr's circle space for aluminum, T300/5208 cross ply and uni­
directional (isotropic, square-symmetric and orthotropic materials, 
respectively, as listed in the Homework Problems in Chapter 1 ). 

d. Biaxial states of stress are those with two nonzero components which
also become the principal stresses if the two normal stress com­
ponents are not zero. There are four most common biaxial states:

1) o, = 02 = P, 06 = 0

2) 01 = o2 = -P, 06 = 0
(2.62) 

3) 01 =-02 = Q, 06 = 0

4) 01 =-a2 =-Q,06 = 0

Show these states in solip dots in the Mohr's circle space. If each of 
the applied stress is equal to 100 MPa, show the resulting states of 
strain for the same materials in Problem c.

e. Show the relation between the following two states of st.ress:

06 = Q, and 
(2.63) 

How can this be used to establish relations between engineering con­
stants for isotropic material as in Equation 1.23? Can this be used for 
nonisotropic materials? 

. I 
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nomenclature 

I 

m, n 

p, q, r 

P, q,, 

x,y 

l ,  2

U, V 
I I 

u,v 

O; 

= First order invariant of stress or strain, depending on the 
subscript 

= cos0, sin0 
= Linear combinations of stress or strain components 
= Special linear combinations of stress or strain components 

with reference to the material symmetry axes 
= Components of modulus; i,j = x,y,s or l ,  2,6 
= A second-order invariant of stress or strain; it is the radius of 

the Mohr's circle 
= Components of compliance, i.j = x,y,s or 1, 2,6 
= Positive, and negative or inverse transformation of stress or 

strain, depending on the subscript. The sign corresponds to 
that of the ply orientation 

= New or transformed coordinate axes, usually refer to the 
on-axis orientation 

= Reference coordinate axes, usually refer to some off-axis 
orientation 

= Displacements along the x and y axes 
= Displacements along the l and 2 axes 
= Stress components in the material symmetry axes i = x y s·

or in the 1-2 reference axes, .i = l ,  2,6 
' ' • ' 

= Principal stress components 
= Strain compone,nts in the material symmetry axes i = x y s·

or in the 1-2 reference ·axes, i = l ,2,6 
' ' ' ' 

= Principal strain components 
= Angle of ply orientation; counterclockwise rotatjon is 

positive 
= Phase angle for stress or strain transformation in the invariant 

formulation; it is the orientation of the principal axes mea­
sured in the reference axes 1-2 

chapter 3 
off-axis stiffness of 

unidirectional composites 

The stiffness of unidirectional composites with off-axis ply orientation 
is important because composite laminates are normally made of off-axis 
in addition to on-axis plies. We must know how to determine the con­
tribution to the laminate stiffness by each ply or ply group. We will 
need the transformation of stiffness and compliance to determine the 
off-axis stiffness. Like those for stress and strain, the transformation 
relations of stiffness and compliance can be formulated in terms of the 
power functions, the multiple angle functions and the invariants. Exam­
ples of a specific graphite-epoxy composite are used to illustrate the 
off-axis stiffness of unidirectional composites. 

.. ··· .... · 
tl ·.·.·.·.•,•,·,•.•,•, 
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1. off-axis stiffness modulus

As we have shown in Figure 2.4 and repeated here in Figure 3.1, the 

off-axis stiffness can be determined in three steps: the off-axis to on­

axis strain transformation, the on-axis stress-strain relations, and the 
inverse or the on-axis to off-axis stress transformation. This process was 

initiated by a given strain in Figure 3. l(a) and led us eventually to the 
induced stress in Figure 3. l(d). The off-axis compliance can be similarly 
derived in three steps, as shown in Figure 2.3. The purpose here is to 
derive the off-axis stiffness and the off-axis stress-strain relation for an 
arbitrary angle of orientation. Then we can go directly from (a) to (d) 

in Figure 3. l in one step. 

O
;; 

r,; 
(a) ---• (b) i/=x .r.s (c) --- (d)

Off-Axis On-Axis '' On-Axis Off-Axis 
Strain Strain Stress Stress 

l 
i;J=l,2,6 

Figure 3.1 Determination of the off-axis stiffness: 
From (a) to (b ): use positive strain transformation. 
From (b) to (c): use the on-axis stress-strain relations in stiffness. 
From (c) to (d): use negative or inverse stress transformation. 
We can go from (a) to (d) directly if we merge these three steps 
into one. This is the same as Figure 2.4. 

We will follow these steps in Figure 3.1. 

• To go from (a) to (b ), we need the strain transformation listed in

Table 2.5, repeated here as follows:

ex = m2 e 1 + n2 e2 + mne6 

€y 
= n2 e 1 +m2 e2 -mne6 (3.1) 

es = -2mne 1 + 2mne2 + [m2 -n2 ] e 6 
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• To go from (b) to (c) in Figure 3.1, we need the on-axis ortho­

tropic stress-strain relation in modulus in Table 1.6 which, when

combined with the results in Equation 3.1, produces:

(3.2) 

Similarly, 

(3.3) 

• To go from (c) to (d) in Figure 3.1, we need to modify the stress

transformation as listed in Table 2.1. The angle of rotation is now

negative. The numeric and letter subscripts are interchanged. The

letter subscripts now refer to the old (before transformation), and
the numeric subscripts, the new (after transformation).

o 1 
= m2 a + n2 a - 2mna

X y S 

+ (mnQxx -mnQxy )€6]

(3.5) 

+ n2 [(m2 Qxy + n2 Qyy)€ 1 + (n2 Qxy + m2 Qyy)€2 (3.6) 
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+ [m2 n2 Q + m2 n2 Q + (m4 +n4 )Q -4m2 n2 Q )e 
xx y y xy ss 2 

Similarly, 

(3.7) 

(3.8) 

(3.9) 

'(3.10) 

This is the off-axis stress-strain relation that directly relates the given 
strain in Figure 3.l(a) to the resulting stress in 3.l(d), redrawn in 
Figure 3. 2. This relation can also be arranged in a matrix multiplication 
table as follows: 

Qij ( a J ----'------ ( b J 

Off -Axis Off -Axis 
Strain Stress 

Figure 3.2 The off-axis stress-strain 
relations in stiffness. We have merged 
the three steps in Figure 3.1 into one. 

table 3.1 
off-axis stress-strain relation for unidirectional 
composites in terms of stiffness 

€, €z €6' 

o; 0,, 0,2 0,6' 

(Tz 02, 022 �6' 

� 06'1 06'2 06'6' 
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The major difference between the on-axis stress-strain relation in Table 
1.6 and the off-axis relation in Table 3.1 lies in the additional com­
ponents in the, stiffness. These components with subscripts 16 and 26 
are shear coupling terms that relate the shear strain to normal stress. 
Those with 61 and 62 superscripts are normal coupling terms to relate 
normal s_train to shear stress. Such couplings do not exist in conven­
tional materials, or in unidirectional composites in their on-axis orienta­
tion. Geometric illustration of these coupling effects will be done when 
we develop the off-axis orthotropic compliance. Symmetry of these 
components can also be demonstrated in a manner similar to that used 
for the Q 1 2 component in Chapter l. The stored energy in Equation 
1.16 must contain interaction terms of a 1 a6 and a2 a6 , or their equiv­
alent in strain components e 1 e6 and e2 e6 • 

The relationship between the stiffness components of the on-axis 
and the off-axis orientations can be summarized in Table 3.2 where 
matrix multiplication is implied. These relations result from the deriva­
tion of Equation 3.8 and what was omitted in Equations 3.9 and 3.10. 
These relations are limited to transformation from the on-axis, ortho­
tropic orientation where shear coupling components are zero. Note that 
Qxs and Q

ys 
do not appear as column headings in this table.* 

table 3.2 
transformation of stiffness from on-axis unidirectional 

composites in power functions 

Oxx o,y Oxy Oss 

o,, m 4 n4 2m2n2 4m"nz 

Ou n4 m 4 2m2n2 4mZn2 

o,,, m"n2 mznz m 4 +n4 -4m2n2 

06'6 m
z

n
z m2n2 -2m2n2 (m 2-n2l 

o,6 m'n -mn' mn'-m'n 2(mn'-m'n) 

026 mn' -m'n m'n-mn' 2(m'n-mn') 

m = cos6', n= sin6' 

*If the transformation is from one off-axis orientation to another, additional columns for Q, 
6 

and Q2 
6 

must be present. This unabridged transformation relation can be found in the

Appendix A of this book.
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This formulation appears most frequently in the literature. This is easy 
to use if the ply orientation is ±45 degrees, or when one or more 
on-axis moduli are zero. Note that all the sums of exponents of the 
trigonometric functions in this table are in the fourth power which are 
by definition characteristic of the 4th rank tensor. The stress trans­
formation equations are governed by the 2nd power functions, as we 
have shown in Table 2.1, and belong to the 2nd rank tensor. The strain 
transformation equations in Table 2.5 are also governed by 2nd power 
functions, but are different from those for stress because engineering 
shear strain is used which is twice the tensorial shear strain. 

The critical issue is again the sign convention. The angle used in this 
table is the ply orientation. Because of its importance, Figure 2.2 is 
shown here again for emphasis. For unidirectional composites, the 
on-axis, orthotropic, and material symmetry axes coincide. We use the 
x-y axes to denote this configuration. The off-axis, generally ortho­
tropic configuration refers to ply orientations other than O or 90
degrees. We use the 1-2 axes for the off-axis situation. This is shown in
Figure 3.3(a). But for multidirectional laminates, there can be many ply
orientations. The 1-2 axes remain as the reference coordinates for the
laminate. Each ply orientation 0; can be designated by X;-Y; axes. The
angle used in Table 3.2 is that shown in Figure 3.3. This sign conven­
tion is not used universally. Some authors define ply orientation
opposite to that shown in Figure 3.3. Then their transformation rela­
tions will be different from those shown in Table 3.2. In particular, any
term that has the odd power of sines (n and n3 ) must change its sign.
The shear or normal coupling terms Q, 6 and Q2 6 are the only com­
ponents affected.

(o) (b) 

Figure 3.3 Positive ply orientation is shown. The 
notation for unidirectional composites normally 
follows that in (a); that for multidirectional 
composites, in (b) where 0; is the orientation of 
the i-th ply or ply group. 
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In order to clearly define the ply orientation or the angle of trans­
formation, Figure 3.4 shows alternative relations between the co­
ordinates x-y and 1-2. The transformation relations of Table 3.2 are 
applicable to the angles so defined in Figure 3 .4. 

y 
2 

ti \t �� 6 I 

�� 
X 

y 2 2 y 

ti \t d 
•�: 

Iii 6 X 

(a) (b) 

Figure 3.4 Angle of transformation for 
Table 3.2. Angle is positive in (a); and 
negative in (b). Many authors use the 
relation in (b ), but call the angle positive. 
Then the relation in Table 3.2 for the 16 
and 26 components must change sign. 

There is a fundamental difference between the transformation relations 
for the stiffness and those for stress and strain.* For the stiffness, the 
relation is based on a transformation from the on-axis or material 
symmetry axis to an arbitrary reference axis. The column headings in 
Table 3.2 have subscripts x, y, s; while the row headings, 1, 2, 6. We go 
from x-y to 1-2 coordinate system for the stiffness. But for stress and 
strain, the transformation, such as those shown in Tables 2. l and 2. 5, 
we go from the off-axis to the on-axis, or 1-2 to x-y coordinate system. 
While the selection of 1-2 or x-y or any other description of the axes is 
arbitrary, the stress and strain transformations shown above are valid 
provided the angle of rotation follows the established signs convention; 
i.e., positive for counterclockwise rotation. The transformation of
stiffness shown in Table 3.2 is valid only when we go from on-axis to
off-axis. If we want to go from one off-axis orientation to another

*The difference is referred to in Appendix A as the material versus behavioral quantities.
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off-axis, additional terms are required for the transformation relations. 
This can be readily derived by adding the contribution of the normal 
coupling term in Equation 3.2. The result is shown in Appendix A. 

We can further develop a multiple-angle formulation for the stiffness 
transformation in place of the power functions in Table 3.2. This proc­
ess can be done directly by substituting the following trigonometric 
identities into Table 3.2. * 

m4 

m3n 

m2 n2 

mn3 =

n4 = 

l -(3 + 4cos20 + cos40)
8 

.!. (2sin20 + sin40) 
8 

1 
8 0 

-cos40)

.!. (2sin20 -sin40) 
8 

½ (3 - 4cos20 + cos40) 

(3.11) 

We will now show three examples of the substitution of values from 
Equation 3.11 into Table 3.2: 

Q, I = m4 Qxx + n4 QYY 
+ 2m2 n2 [Qxy 

+ 2Qss 1 

I 1 
= -(3 + 4cos20 + cos40)Qxx +-(3 -4cos20 + cos40)Q

YY 8 8 

(3.12) 

*This was suggested to us by P. W. Mast, U.S. Naval Research Laboratory, Washington, D.C.

Ql6 
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= U4 - U3 cos40 (3. I 3) 

= .!.(2sin20 + sin40)Qxx -.!.[2sin20-sin401Qyy 
8 8 

(3. 14) 

We can repeat the process for the other three components of the off­
axis modulus and list the results in Table 3.3 in matrix multiplication 
format and using the following definitions of the linear combinations of 
modulus: 

(3. I 5) 

(continues) 
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table 3.3 

transformed stiffness from on-axis uni­

directional composites in multiple angle 

functions 

I Uz u, 
----· 

QI/ l.1t cos2tl cos46 

022 l.1t - cos26 cos46 

O,z u. -cos46 

066 U5 - cos46

o,6 -f sin26 sin46

026 7 sin2tl - sin4tl

(3.15) 
(concluded) 

This formulation has two distinct advantages over the power function 
formulation. First, the invariants are explicit. Secondly, the integration 
and differentiation of multiple angle functions are easier than those of 
power fun�tions. 

From the transformation equations in Table 3.3, we can show the 
off-axis combinations listed in Equation 3.15 are.: 

(3.16) 

From Table 3.3: 

(3.17) 

From Equation 3.15: 

U, = an invariant 

Similarly 
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(3.18) 

U� = U2 cos20 = not invariant 

u; = U3 cos40 = not invariant 
(3.19) 

= an invariant 

= an invariant 

When the off-axis(primed) and on-axis(un-primed) combinations are 
equal, they are by definition invariant. This is analogous to the stress 
invariants in Equation 2.14. Note that U,, U4 , and U5 are first-order or 
linear invariants, of which two are independent because we can show 
from Equation 3.15 that 

(3.20) 

This relation between the invariants is analogous to that between the 
modulus of isotropic materials shown in Equation l .  23. We have shown 
that stress and strain possess a second-order or quadratic invariant each; 
i.e., the radius of Mohr's circle. The modulus also possesses second­
order invariants. They can be derived as follows. We will first define
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two additional linear combinations for the modulus. 

(3.21) 

We can now derive two second-order invariants as follows: 

R2 = u; 2 
+ 4U� 2 

I 

= � [cos2 20 + sin2 20) (3.22) 

= u2 

2 

or 

R1 = ±U2 (3.23) 

Similarly, 

R2 
2 

u;2 + u; 2 

= � [ cos2 40 + sin2 40] (3.24) 

= u2 
3 

or 

R2 = ±U3 (3.25) 

where R 1 and R2 are invariants and U2 and U3 are not. The values of 
u; and u; stated in Equation 3.19 are based on the on-axis orientation 
for which the shear/normal coupling terms are zero. For off-axis orien­
tations, terms containing Ul and U/ must be added to the relations in 
Equations 3. l 9 and 3.21. This is shown in Appendix A. The R's are 
radii of the equivalent Mohr's circles for the modulus. (See Figure 3.9.) 
They must always be positive. The U's can be positive or negative. In 
fact, U2 would be negative if the longitudinal and transverse directions 
are interchanged. The correct sign in Equations 3.23 and 3.24 must be 
picked to make R I and R 2 positive. 
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We can derive the transformation equations for stiffness in terms of 
invariants as we did for stress and strain transformations and shown in 
Tables 2.4 and 2.8. If we limit ourselves to transformed stiffness from 
the material symmetry or orthotropic axes, the results will be identical 
to those shown in Table 3.3; in which case, positive values of U2 and 
U3 are assigned to R 1 and R 2, respectively. This is done in Table 3.4, 
where matrix multiplication is implied. 

table 3.4 
transformed stiffness from on-axis uni­

directional composites in invariant functions 

I R, R2 

011 u, cos28 cos48 

022 u, - cos26 cos46 

0,2 U4 - cos46

066 U6 - cos48

o,6 j sin28 sin46 

026 j sin28 - sin46

This table is valid for the x-axis to be pointed along the fiber orien­
tation, like that in Figures 3.3 and 3.4. If a material is not orthotropic 
but anisotropic, the table must be modified. The definitions of R's will 
remain the same as Equations 3.22 and 3.24. But the off-axis linear 
combinations of stiffness Ui', U3', Ul and U/ will have additional 
terms. There will also be two phase angles, analogous to that for the 
stress transformation in Equation 2.19. The transformation of 

- anisotropic moduluswiU be listed in. Appendix A.

2. examples of off-axis stiffness

We will show in this section the transformed stiffness for a graphite­
epoxy composite. The particular material system for our example is the 
Union Carbide and Toray T3OO filament and Narmco 5208 resin, or 
T300/52O8 for short. The stiffness data for this material were listed in 
Table 1.9. We can immediately calculate the transformed stiffness by 
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substituting the data into the transformation equations in Table 3.2. 
Numerical data for the transformed stiffness are listed in Table 3.5 and 
plotted in Figure 3.5. All six transformed components of the stiffness 
are shown. The angle of ply orientation is also shown where counter­
clockwise direction is positive. 

table 3.5 
transformed stiffness of TJ00/5208 unidirectional composites (GPal 

0 Q11 Q22 Qll Q66 Q16 Q,l6 

0 181.8 10.3 2.90 7.17 0 0 
15 160.4 11.9 12.75 17.05 38.50 4.36 
30 109.3 23.6 32.46 36.78 54.19 20.05 
45 56.6 56.6 42.32 46.59 42.87 42.87 
60 23.6 109.3 32.46 36.78 20.05 54.19 
75 11.9 160.4 12.75 17.05 4.36 38.50 
90 10.3 181.8 2.90 7.17 0 0 

An alternative method of arriving at the same transformed stiffness 
is the use of the multiple-angle or the invariant formulation in Table 3.3 
or Table 3.4, respectively. We must first determine the values of the U's 
using Equation 3.15 and data in Table 1.9. The results of several uni­
directional composites including T300/5208 are listed in Table 3.6. A 
typical calculation is listed as follows: 

From Equation 3.15 

From Table 1.9 for T300/5208 

U. = ½(3 X 181.8 + 3 X 10.34 + 2 X 2.897 + 4 X 7.17)

= 76.37 GPa (3.26) 
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Figure 3.5 Transformed, off-axis stiffness of T300/5208. The angle is 
the ply orientation, and is positive for counterclockwise rotation. 

table 3.6 
linear combinations of stiffness for transformation of modulus (GPa) 

T300/5208 
8(4)/5505 
AS/3501 
Scotchply l 002 
Kevlar 49 /Epoxy 

Ui 

76.37 
87.80 
59.65 

20.45 

32.44 

85.73 
93.21 
64.89 
15.38 
35.54 

19.71 
23.98 
14.25 
3.32 

8.65 

22.61 
28.26 
16.95 

5.51 

10.53 

26.88 
29.77 
21.35 
7.46 

10.95 
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With the values listed in this table and the equations in Table 3.3 or 3.4, 
we can arrive at the same transformed stiffness listed in Table 3.5 and 
shown in Figure 3.5. 

A typical calculation by the multiple-angle transformation is listed as 
follows: 

From Table 3.4: 

Q 1 1 = U1 + U2 cos20 + U3 cos40

From Table 3.6 for T300/5208: 

when 

Q 11 = 76.37 + 85.73cos20 + 19.71cos40 

0 = 45 degrees, cos20 = 0, cos40 = -1 

Q 1 1 = 76.37- 19.71 = 56.66 GPa 

This result agrees with that shown in Table 3.5. 

(3.27) 

(3.28) 

(3.29) 

The calculation of transformed stiffness using the invariant formu­
lation as shown in Table 3 .4 will be identical to the multiple angle 
because 

(3.30) 

This identity is true only for the stiffness transformation with the fiber 
axis placed along the I-axis; i .e., 

As we shall see later, the transformed compliance calls for negative signs 
in Equation 3.23. Then the multiple-angle formulation is not identical 
to the invariant formulation because of this sign change. 

A number of general remarks can be made about the transformed 

stiffness, applicable to orthotropic composites listed in Table 3.6. 
Mirror image exists between Q 1 1 and Q2 2, and Q 1 6 and Q2 6• This 

can be shown by substituting 0+90 into appropriate equations in Tables 
3.3 or 3.4, and seen in Figure 3.5. 

off-axis stiffness of unidirectional composites 81 

Q 1 1 (0+90) = U1 + U2 cos2(0+90) + U3 cos4(0+90) 

(3.31) 

These two components can be superimposed by a displacement of 90 
degrees along the 0-axis. This is expected because cosine functions are 
even. We can also show 

These two components can be superimposed by a displacement and a 
rotation. This is also expected because these components are dependent 
on sine functions(see Taole3.4)which are odd. 

The angular dependency and amplitude of Q12 and Q66 are the 
same; i.e., 4,0 and U3 , respectively. (See Figure 3.6.) The two trans­

formed components are vertically displaced by the amount of U5 - U4 • 

The Poisson and shear components are dependent on cosine functions, 
and therefore symmetric about the 0 = 0, 90, and ±45 degrees. We can 
readily derive from Equation 3.15 that 

(3.33) 

This is another invariant. This is not an independent invariant. We can 
say that any linear combination of invariants is an invariant. 

The first four transformed components in Table 3.3 (i.e. the normal, 
Poisson, and shear components) are governed by cosine functions. They 
are even functions and not sensitive to the sign of ply orientation. So an 
error in the sign will not affect these components. But the last two 
components in Table 3.3 are the shear or normal coupling components 
and are governed by sine or odd functions. A sign error will lead to a 
real error. 

Because of the symmetry relations between these transformed com­
ponents, we only need to show three curves instead of six in Figure 3.5; 
either the three curves on the left of this figure or the three on the 
right. In Table 3.5, Q2 2 and Q2 6 can be deleted, if we know their 
symmetry relation with Q 1 1 and Q 1 6, respectively. 

The Q, 1 or Q22 component is made up of three terms; one constant 



• 

82 introduction to composite materials 

,------��-

_.., __ ..J...._ _ __.____;'-
..,.--'---6 

60 '9'J-' 
0 30 

60 60 

60 

40 

20 

/ 

Figure 3.6 Transformed stiffness as functions of U's. The relations i�
Table 3.3 are shown graphically. Each transformed component contams 
an invariant and/or cyclic terms. 

or invariant term and two cyclic terms with angular rotations 2 
and 4 times that of the coordinate rotation; see Equation 3.27. Since 
the cyclic ten;ns do not contribute to the total area under this curve, 
this area is simply proportional to U1• Thus, this invariant represents 
the Young's modulus or normal (as opposed to shear) stiffness potential 
of this unidirectional composite. The cyclic terms contribute to the 
directional changes. The increase in the stiffness in one direction must 
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be made up by a decrease in some other direction while the total area 
under the transformed modulus remains constant and invariant. This is 
like an incompressible material that can undergo a shape change with­
out any volume change. Figure 3.6 shows the contribution of the U's to 
the stiffness components. 

The shear and normal coupling terms Q16 and Q26 have no invariant 
associated with -the- transformation. They are not independent in the 
sense that they are derivable from Q11 and Q22 by differentiation, 
respectively. From Table 3.3 or 3.4, 

From Equation 3.34 

Q 1 6 = 0, when 0 = 0 and 90 degrees, or 

when U2 + 4U3 cos20 = 0, or 

For T300/5208 from Table 3.6 

U2 

4U3 

85.73/4 X 19.71 = 1.08 > l 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

There is, therefore, no solution for 0 from Equation 3.37. The shear 
coupling goes to zero only at 0 and 90 degrees. The same holds true for 

Q2 6, except the sign in Equation 3.3 7 is positive. Because of these rela­
tions, the tangents, maxima and points of inflection between Q, 1 and 
Q1 6 can be obtained from 

(3.39) 
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Substituting cos40 = 2cos2 20 - l,  and rearranging, we get 

U2 l 
cos2 20 + -- cos20 - - = 0 

8U3 2 

The solutions for 0 are 

For T300/5208, 

cos20 = 0.485;-l.029 

0 = 30.4 degrees; no solution 

(3.40) 

(3.41) 

(3.42) 

At this angle, it is the point of inflection in the Q11 curve and a 
maximum in the Q1 6• Similarly, at 59.6 degrees, Q2 2 has the inflec­
tion, and Q2 6, the maximum. These relations are shown in Figure 3. 7. 
Points of inflection of Q 1 6 can be found from letting 

8sin20[U2 + 16U3 cos20] = 0 

sin20 = 0 or 0 = 0, 90 for all components 

cos20 =

0 = 52.88 degrees for T300/5208 

(3.43) 

(3.44) 

(3.45) 

The power functions formulation for the stiffness transformation 
can be used to demonstrate the dominance of the longitudinal proper­
ties of unidirectional composites. Since the first column of Table 3.2 is 

200 

50 
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Figure 3. 7 Relationships between transformed stiffness. Special 
relationships are expressed in Equations 3.34 to 3.45. Note the 
point of inflection in Q 11 is the point of maximum value in Q16 . 

At O and 90 degrees, Q 1 6 are zero, and the slopes of Q 1 1 are also 
zero. The points of inflection for Q1 6 are also shown .. 

many times higher than the other components;i.e., 181 GPaversus 10, 
3 and 7 for T300/5208 based on the data in Table 1.9, we can show the 
contribution of the first column or that of Q

xx 
in Figure 3.8. The 

dashed lines are those transformed stiffness based on the first column 

of Table 3.2; the solid lines are the complete solutions, as those in 
Figure 3.5. We can see that for a highly anisotropic unidirectional com­
posite such as T300/5208, this approximation is fairly close to the 
exact. By the same token, we can approximate the values of U's in 
Equation 3.15 as: 
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Figure 3.8 Approximation of transformed stiffness. Only the Q
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term 
for T300/5208 is used. The dashed lines are approximate; the solid lines, 
exact. 

(3.46) 
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The approximate transformation equations can be simplified from 
Table 3.3 as follows: 

(3.4 7) 

This and the other components of transformed stiffness will be the 
same as the first column of Table 3.2. Thus, both power functions and 
multiple-angle functions for the stiffness transformation reduce to the 
same limiting case when only the Ox x is present. 

The transformation relations in Tables 3.3 and 3.4 can be illustrated 
by two generalized Mohr's circles similar to the Mohr's circle for the 
transformation of stress or strain. From the first equation in Table 2.4 
for the stress transformation: 

ax =I+ Rcos2[0-00] (3.48) 

A Mohr's circle can be constructed as shown in Figure 2.8. The location 
of the center is /, the radius of the circle is R, and the phase angle 
determines the specific stress components for a given state of stress. 

The transformation of modulus is governed by similar equations such 
as the first one from Table 3.4: 

011 = U, + R 1 cos20 + R2 cos40 (3.49) 

This relation can also be shown as Mohr's circles. Now we have two 
circles with radius R 1 and R 2 , and angular rotations two and four times
that o.f the coordinate axes. The distance between the circle is the 
invariant U1• The generalized Mohr's circles for the stiffness of an 
_orthotropic material such as a unidirectional composite TJOO/52O8 are 
shown in Figure 3.9 using the data in Table 3.6. The radii of the circles 
dictate the degree of orthotropy. The direction of rotation correspond­
ing to a positive ply orientation 0 is also shown in this figure. As we will 
see in the next chapter, the effective radii of the generalized Mohr's 
circles reduce as unidirectional plies are made into multidirectional 
laminates. The distance between the centers, however, remains invariant 
and fixed. In the limit, the radii can go to zero and we are left with 
only the isotropic constant U1 • The process of lamination always 
reduces the radii of the generalized Mohr's circle. 
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Figure 3.9 Generalized Mohr's circles for the stiffness of T300/5208. 
The distance between the two centers is the first invariant. The radii 
for a given material are also fixed. The angle of rotation of the co­
ordinate axes is magnified to two and four times in the Mohr's circles. 

3. off-axis compliance

Analogous to the approach for the off-axis modulus, we can derive the 
off-axis compliance following the sequence of Figure 3.10, which is a 
repeat of Figure 2.3. 

o; 

\ o; 
€y "z 

LOi 

.�/J: �

€x L� --�'-er --J��,.:.� '-. ...-li'l:;;,-\ ...--�,.,.\ -♦

(a) 
,: s,, r,,-

(b) 1,;=x,y,s (c) (d) 
Off-Axis On -Axis On-Axis Off-Axis 

Stress Stress Strain Strain 

l 0,
,;j=l,2,6 

Figure 3.10 Derivation of off-axis compliance. 
From (a) to (b): Positive stress transformation. 
From (b) to (c): Stress-strain relations in compliance. 
From (c) to (d): Negative strain transformation. 
We can go directly from (a) to (d) by merging the three 
steps into one. 
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Since the derivation of the compliance transformation is analogous 
to that of the stiffness transformation from Equations 3 .1 to 3 .10, we 
will write only the first line of each equation for this derivation. 

• To go from (a) to (b) in Figure 3.10, we use the equations for
stress transformation from Table 2.1:

(3.50) 

• To go from (b) to (c) in Figure 3.10, we need the on-axis stress
strain relation in compliance from Table 1.5.

(3.51) 

• To go from (c) to (d) in Figure 3.10, we need the negative strain
transformation in Table 2.5, where the sine functions now have
negative signs.

(3.52) 

+ {m2n2 [S
xx 

+S
yy

l + [m4 +n4 ]Sxy 
-m2n2 S

ss }o2 (3.53)

+ {2m 3nS
xx -2mn3 S

yy 
+ [mn3 - m3n] [2S

xy 
+ Sssl }06

(3.54) 

Note that shear coupling terms appear in this off-axis unidirectional 
composite, in an analogous fashion as the off-axis stiffness equations 
3.8 to 3.10. The off-axis stress-strain relation in terms of compliance is 
presented in a matrix multiplication table in Table 3.7. This is similar to 
the off-axis stress-strain relation in terms of the stiffness in Table 3.1. 
The symmetry relations for the transformed compliance can be shown 
by including interaction terms 0106 and 0206 in addition to o 1 o2 in 
the stored energy expression in Equation 1.16. We can then show that 

(3.55) 
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Figure 3.11 Transformed, off-axis compliance of T300/5208. The angle 
of rotation is positive when it is counterclockwise. 

table 3.7 
off-axis stress-strain relation for unidirectional 

composites in terms of compliance 

<r, o; o;. 

€, S" s,2 s,6 

€ 2 S2, S22 S26 

€6 S61 Su s" 
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The transformation equations for the compliance are taken from 
matching like terms in Equations 3.53 and 3.54, and will be shown in 

Table 3.8. This table is analogous to the transformed stiffness in 
Table 3.2. 

table 3.8 
transformation of compliance of on-axis unidirectional 

composites in power functions 

Sxx Syy Sxy Sss 

S11 
m" n" 2m 2n2 m2n2 

5
22 

n" m" 2m2n2 m2n2 

s,2 m 2n2 m2n2 m 4 +n4 - m 2n2 

s66 4m2n2 4m2n2 -8m2n2 (m 2-n2)2 

s,6 2m'n -2mn' 2(mn'-m'n) mn'-m'n
5

26 2mn' -2m'n 2(m'n-mn') m'n -mn' 

m = cos t9, n = sin t9

Note that the difference between this table and Table 3.2 for the trans­

formation of stiffness can be traced to the use of engineering shear 

strain. For each component with single subscript 6, the coefficients on 

each row shall be multiplied by 2. For components with double sub­

script 6, such as S6 6, the coefficients shall be multiplied by 4. In the 

last column of Table 3.8, the effect of double subscript s is to divide 

each coefficient by 4. All the differences between Tables 3.8 and 3.2 
can be accounted for with these corrections. 

The multiple-angle formulation of the transformation of compliance 

follows precisely the same pattern as that for the transformed stiffness. 

The multiple-angle trigonometric identities in Equation 3.11 can be 
substituted into the coefficients in Table 3.8. By following the same 
process as in Equation 3.12 to 3.14, we can derive the multiple-angle 
representation of the transformed compliance in Table 3.9. 

- I 
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table 3.9 

transformed compliance for on-axis unidirectional 

composites in multiple-angle functions 

I U2 u, 

S11 u, cos26 cos 46, 

S22 u, -cos26 cos46 

S,2 u. -cos46 

S1111 U5 -4cos46

S,11 sin26 2sin 46

S211 s in26 -2sin 46

The definitions of the U's are: 

(3.56) 

The difference between the U's of this equation and those for the 
stiffness in Equation 3.15 can again be traced to the use of engineering 
shear strain. The shear invariant U5 and the S

ss 
component must be 

multiplied and divided by four, respectively, in order to match 
Equation 3.56 with 3.15. 

Of the three linear or first-order invariants in Equation 3.56 only two 

are independent. The following relationship shows that the third 
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invariant is dependent on the other two. 

(3.57) 

There are also two quadratic or second-order invariants which can be 
derived from the second and third columns in Table 3.9. 

or 

or 

= u2 

3 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

From the relationship above, we can derive the transformation equa­
tions in terms of the invariants. For the compliance of an on-axis uni­

directional composite, U2 and U3 are negative if the longitudinal(the 
x-axis) stiffness is higher than the transverse(the y-axis) stiffness. (See
data in Table 3.11.) The transformation of compliance using the
invariant functions is listed in a matrix multiplication table as follows:

table 3.10 

transformed compliance of on-axis unidirectional 
composites in invariant functions 

I R1 R2 

S11 u, -cos26 -cos4tl

S22 u, cos2tl -cos46

S ,2 u. cos46 

S1111 U5 4cos46 

S,11 -sfn26 -2sin 46

S211 -sin26 2sin 46

- I 
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Note that the signs of the trigonometric functions are changed from 
those in Table 3.9 because U2 and U3 have negative values. So negative 
signs must be used in Equations 3.59 and 3.61, or 

(3.62) 

This choice of signs is different from the invariant functions of the 
modulus transformation in Table 3.4 where the positive values of U2 

and U3 were picked. This was so because Qxx is greater than Q
YY 

for 
most unidirectional composites. Table 3.10 as well as Tables 3.8 and 
3.9 are limited to orthotropic compliance. For anisotropic compliance, 
comparable transformation tables are shown in Appendix A. 

4. examples of off-axis compliance

We will show in this section the transformed compliance for 
T300/5208. The orthotropic components of the compliance are listed 
in Table 1.8 for this composite. When these values are substituted into 
the transformation equations in Table 3.8, we will get the transformed 
compliance. 

Alternatively, we can arrive at the same transformed components if 
we use the U's computed from the relations given in. Equation 3.56, and 
the values for typical composites are listed in Table 3.11. The trans­
formed compliance can then be computed from the relations in Table 
3. 9. The numerical results are listed in Table 3.12, and curves plotted in
Figure 3.11.

table 3.11 

typical values of linear combinations of compliance for on-axis unidirectional 
composites (TPa)-1

T300/5208 
8(4)/5505 
AS/3501 
Scotchply 1002 
Kevlar 49 /Epoxy 

Ui 

55.53 
43.42 
61.62 
83.50 

126.40 

-45.78
-24.55
-52.18
-47.50
-84.33

- 4.22 - 5.77
-13.94 -15.06
- 2.20 - 4.38
-10.20 -16.90
-28.86 -33.33

122.6 
117.0 
132.0 
200.8 
319.4 
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table 3.12 
. _1 

transformed compliance for T300/5208 unidirectional composites (TPa) 

8 S11 S22 S12 s66 S16 S26 

0 5.52 97.09 -1.55 139.4 0 0 
15 13.77 93.06 -3.66 131.0 -30.20 -15.58
30 34.75 80.53 -7.88 114.1 -46.96 -32.34
45 59.75 59.75 -9.99 105.7 -45.78 -45.78
60 80.53 34.75 -7.88 114.1 -32.34 -46.96
75 93.06 13.77 -3.66 131.0 -15.58 -30.20
90 97.09 5.52 -1.54 139.4 0 0

The general remarks on the transformed compliance are very similar 
to those on the stiffness. We will simply repeat the relevant features 
without further detailed discussions. 

Mirror image exists between S 1 1 and S2 2 , and S 1 6 and S 2 6. This can 
be seen from Table 3.12 and Figure 3.11. 

The amplitude of S 1 2 is now one quarter that of S6 6. The angle 40

remains the same for both transformed components. 
Again, �nly the shear and normal coupling components are affected 

by the sign of the angle of rotation. 
Because of tne symmetry, only three transformed components S 1 1, 

S12 (or S66) and S16 need to be drawn. 
In Figure 3.12 the dashed lines show the approximation of the trans­

formed components using only the first one or two columns of the 
complete transformation equations in Table 3.9. Because of the partic­
ular values for T300/5208, the approximations give excellent results. 
This is analogous to the transformed stiffness shown in Figure 3.8. 

5. inverse relationship between modulus and compliance

The off-axis stress-strain relations as listed in Tables 3.1 and 3.7 are 
based on stiffness and compliance, respectively, and are repeated here 
as Tables 3.13 and 3.14. The difference between these stress-strain rela­
tions is that the role of stress and strain are the inverse of each other. In 
Table 3.13, the strain is the independent variable; in Table 3.14, the 
stress is the independent. We inverted the on-axis stress-strain relations 
in Chapter I. We went from Equations 1.8 to I. 11 by simply solving 
the simultaneous equations. We need only to repeat the same process 
for the off-axis case, where shear and normal coupling terms are no 
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Figure 3.12 Comparison of exact and approximate transformed 
compliance in terms of the multiple-angle functions for T300/5208. 
The dashed lines are approximations without the last column in 
Table 3.9 or U3 = 0. 

table 3.13 
off-axis stress-strain relation for unidirectional 

composites in terms of modulus 

€, '=2 '=6 

O"j °'' °'2 0
/6 

o; 0 2, 022 026 

a; 06/ 
062 066 
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table 3.14. 
off-axis stress-strain relation for unidirectional 

composites in terms of compliance 

er, o; � 

'=, S11 s,2 s,6 

'=2 S2, S22 S26 

£6 S6, s62 s66 

longer zero. We can proceed with the inversion or solution of these 
simultaneous equations by the method of determinant as follows: 

We will assume that we are given the equations in Table 3.13. We will 
first obtain the determinant ofthe stiffness components: 

Determinant of Stiffness= det Qii = 6. (3.63) 

= Q11Q22Q66 + 2Q12Q26Q61 -Q22Qi6 -Q66Qi 2 -Q11 0�2 

(3.64) 

S11 = (Qzz Q66 -Q�6)/6. 

S22 =(Q11Q66 -Qi6)/b. 

(3.65) 

We have obtained the components of compliance from those of

stiffness. If we are given the compliance and want to know the

stiffness, we simply interchange the Q's and S's in these equations. 

Thus there are many ways that we can compute the off-axis stiffness

or compliance. This is diagrammed in Figure 3.13. The following opera-

tions are involved. 
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• From engineering constants, compute the on-axis compliance and
stiffness shown in Tables 1.8 and 1.9, respectively.

• Compute transformed stiffness using its transformation equations
in Tables 3.2, 3.3, or 3.4; and transformed compliance using
Tables 3.8, 3.9, or 3.10.

• Alternatively, we can go directly from stiffness to compliance by
inversion in Equations 3.64 and 3.65; or from compliance to
stiffness also by inversion.

• Off-axis engineering constants, to be shown in the next section,

must be obtained from the off-axis compliance.

Ex • • • 

I 

I 

Transformation 

Inversion 

I 
I 
I 
I 
I 
I 
I 
I 

011 • • •

Inversion 

Transfo
1
rmation 

I I � Sxx• • • •-----:--- s,, • • • t-----►�
I 
I 

ON-AXts-:-oFF-AXIS 
I 

Figure 3.13 Relations among the on-axis and off-axis stiffness, com­
pliance and engineering constants. The connecting lines indicate the 
paths of mathematical operations. There is no direct link between 
on-axis stiffness and off-axis compliance, or on-axis and off-axis 
engineering constants. 

6. off-axis engineering constants

We first defined engineering constants in Chapter I for orthotropic, 
on-axis unidirectional composites. Equations 1.9 and l .  l O show the 
relations between engineering constants and the components of com­
pliance. In the case of anisotropic, off-axis unidirectional composites, 
we can relate the compliance components in Table 3. 7 to engineering 
constants by performing the following simple tests: 

• Uniaxial tension test along the I-axis.

(3.66) 
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From Table 3.7. 

(3.67) 

Now define coupling coefficients 

=--

(3.68) 

Combining with Equation 3.67, we obtain 

(3.69) 

Note the terms are the longitudinal Poisson's ratio and shear 

coupling coefficient, respectively. The latter does not have a 
counterpart in conventional materials. 

(3.70) 
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• Uniaxial tension along the 2-axis:

(3.71) 

From Table 3. 7 

(3.72). 

Similarly, we can define: 

€1 S12 
V12 

=--=--

€2 Sn 

(3.73) 

€6 s62 
v62 

-- --

€2 S22 

These terms are the transverse Poisson's ratio and shear coupling 

coefficient associated with the 2-axis. 

(3.74) 

• Pure shear test along the 1-2 axes

(3.75) 

" 
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From Table 3.7 

(3. 76) 

We can define: 

(3.77) 

These terms are the normal coupling coefficients. Conventional 
materials do not have such coupling. By rearrangement: 

S16 = v16S66 
V16 

---

E6 

(3. 78) 

S26 = V26S66 
V26 

--

E6 

Thus in place of Table 3. 7, the stress-strain relation for an off-axis 

unidirectional composite in terms of engineering constants can be 

shown in a matrix multiplication table as follows: 

table 3.15

off-axis stress-strain relation for unidirectional 
composites in terms of engineering constants 

C7j o; Os 

� 
I -�

E2 
E6 

t<;., -� I 

E2 E6 

£6 
!!aJ � 

E2 E6 
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Since the compliance matrix is symmetric, 

(3. 79) 

We can rearrange Table 3.15 and obtain an alternative arrangement 
shown in Table 3.16, where each row instead of each column is now 
normalized by a constant. 

table 3.16 

alternative arrangement of stress-strain relation of 
an off-axis unidirectional composite 

tr, a; Oi 

€t 
I _.!21. !:61. 

Ei Ei E, 

� _!jz I � 
E2 E2 E2 

� 
v,6 //26 I 

4 £6 £6 

From the same symmetry property in Equation 3. 79, we can im­
mediately derive the following reciprocal relations: 

V21 E1 S22 ---=-=a 
V12 E2 S11 

(3.80) 

where a is the ratio of the Young's moduli; and band c, useful ratios to 
designers interested in the relative stiffness between bending and 
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twisting. While the symmetry condition for the compliances holds; i.e., 

S--=S--
11 JI (3.81) 

similar symmetry condition for the anisotropic coupling coefficients 
does not hold; i.e., 

(3.82) 

Using the data of T300/5208, we can calculate the numerical values 
of all the engineering constants and tabulate typical results in Table 
3.17. 

table 3.17 

off-axis engineering constants of T300/5208 unidirectional composites 
(GPa) or dimensionless 

0 E1 ,GPa £6 ,GPa J.121 J.161 J.116 

0 181.0 7.17 0.280 0 0 

5 154.4 7.22 0.278 -1.673 -0.0782 

IO 107.8 7.37 0.273 -2.273 -0.155

15 72.62 7.63 0.265 -2.193 -0.230

30 28.78 8.76 0.226 -1.351 -0.411

45 16.73 9.46 0.167 -0.766 -0.433

60 12.41 8.76 0.0978 -0.401 -0.283

90 10.3 7.17 0.0159 0 0 

The data in Table 3.17 are plotted in Figure 3.14. The Poisson's ratios 
are even functions of ply orientation; and the shear and normal 
coupling ratios are odd functions. When ply orientation is positive 
which is the case in Figure 3.14, the shear and normal coupling ratio� 
are negative for T300/5208 and for other composite materials listed in 
Table 1.7. 

In Figure 3.15, the deformed shapes of squares under uniaxial tensile 
and compressive stresses are shown. Due to nonzero shear coupling 
coefficients, shear is induced. There is no counterpart of this material's 
response in conventional materials. In Figure 3.16, the deformed shapes 
of squares under pure shear are shown. Due to normal coupling, the 
area of the squares undergo contraction or expansion depending on the 
sign of the applied shear and that of the normal coupling coefficient. 
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DIMENSIONLESS 
COUPLING 

COEFFICIENTS 

0.5 

-2.5

Figure 3.14 Three dimensionless coupling 
coefficients of unidirectional T300/5208. 
Data are listed in last three columns of 
Table 3.17. 

The relation between off-axis 
e ngineering constants and com­
ponents of stiffness can best be 
expressed by applying simple tests 
such as uniaxial tension and pure 
shear tests like those used earlier in 
this chapter. By substituting the 
strains induced by a uniaxial ten­
sion test, shown in Equation 3.67 
et al., into the stress-strain relation 
in terms of stiffness, we have 

5't;=O 
(ISOTROPY} 

-====- r 
I 

I 

Figure 3.15 Deformed shapes of a 
square under uniaxial stress. The 
shear coupling coefficients are 
negative, zero and positive from 
the top to bottom row. Tensile 
stress is applied in the left column; 
compressive, in the right. 

S1t;=O 
(ISOTROPY} 

4 

Figure 3.16 Deformed shapes of 
squares under pure shear. The 
normal coupling induces areal 
changes. The coupling coefficients 
are negative, zero and positive as 
we move from top to bottom. 
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Then 

(3.84) 

If the ply orientation is zero, we recover the on-axis relation of Equa­
tion 1.13 because at this orientation 

(3.85) 

1161 = Q 

Then 

(3.86) 

where m is defined in Equation l .  13. Note that from Equation 3.84 we 
can say for anisotropic material 

(3.87) 

In fact, the difference between E I and Q 1 1 is shown in Figure 3.17. 
Similarly, we can show 

The difference between £6 and Q6 6 is also shown in Figure 3.17. 

(3.88) 

(3.89) 

Off-axis engineering constants provide another insight into the nature 
of anisotropic materials. The highly coupled behavior provides an 
excellent opportunity of capitalizing on the unique properties of com­
posite materials not possible with conventional materials. Designing 
with composite materials is no longer an extension of that with conven­
tional materials. If we limit ourselves to orthotropic materials, com­
posite materials can be viewed as a special isotropic material. In the 
absence of the shear and normal coupling, response of such materials is 
intuitively similar to isotropic materials. But as we face fully aniso­
tropic materials with shear and normal coupling, the intuition devel­

oped from working with isotropic or orthotropic materials is no longer 
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Figure 3.17 Transformed Young's modulus and shear modulus of 
T-300/5208 unidirectional composite. The data are taken from Table
3.17. Transformed stiffness are also shown for comparison. At 0 and 90
degrees, there is essentially no difference between the two curves. But
significant differences exist in off-axis orientations. The differences
come from the last two terms in Equations 3.84 and 3.89.

valid. New intuition must be acquired. This is the challenge to de­
signers. We must think composites. 

7. conclusions

One of the most important features of composite materials is the varia­
tion of properties as the ply orientation changes. The stiffness of an 
off-axis unidirectional composite is governed by appropriate stress­
strain relations as before. The functional relationship remains the same. 
Although the number of constants have increased from 4 to 6, the 
number of independent constants remain the same at 4. The two addi­
tional constants are related to shear and normal coupling. 

The shear and normal coupling does not have a counterpart in the 
conventional material. The coupling results in more complicated be­
havior. We should take this as an opportunity unique with composite 
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materials rather than a liability. It will require time, effort and willing­
ness to face new challenges for us to acquire the confidence working 
with anisotropic materials. 

We would like to emphasize again the importance of the sign of ply 
orientation. Shear and normal coupling changes sign with the ply orien­
tation. A wrong sign will change completely the effect of this coupling. 

The concept of the invariants is also very important in composite 
materials. The magnitude of the components of stiffness and com­
pliance vary as a function of ply orientation, but the area under the 
transformed components remain constant. This constant value is equal 
to the particular invariant associated with each component of stiffness 
or compliance. The invariants therefore represent the potential of a 
component of stiffness or compliance that is embodied in a unidirec­
tional composite. When we go to the laminated composite consisting of 
multidirectional plies of a given composite material, we will see that the 
invariants of a laminated composite remains the same as that of the 
constituent unidirectional plies. In a sense that lamination only changes 
the directional properties but does not affect the total potential of 
stiffness that a composite material can provide. In the limit we recover 
the isotropic material in which case all directional properties disappear. 

Engineering constants are useful but are based on measurements 
derived from one dimensional tests. Engineering constants are related 
directly to the components of compliance which in turn can be derived 
from the inversion of the components of stiffness. For an off-axis 
unidirectional composite, there is no direct relationship between the 
engineering constants and the components of stiffness. The com­
ponents of compliance is the bridge between them. This is different from 
the on-axis unidirectional composite shown in Chapter l where direct 
link between the engineering constants and the components of stiffness 
existed. 

The variation of the engineering constants as the fiber-orientation 
changes can be derived from the transformation of the components of 
compliance. The engineering constants themselves are not covered by 
any fransformationequafion. This is a fundamental difference between 
the engineering constants, which are derived qualities from the com­
pliance, and the compliance components themselves. There are no 
invariants, for example, associated with the off-axis Young's moduli. 
The Poisson's ratios, the shear and normal coupling coefficients are 
dimensionless ratios. They are not governed by any transformation 

- I 
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equations; they have no invariants; and they are not symmetric. They 
are useful for indication of behavior of off-axis unidirectional com­
posites, but their uses are limited because they are fundamentally one 
dimensional constants. Since composite materials are normally used in 
two dimensional configurations, engineering constants may not be used 
directly in many instances. 

Effective use of composite materials must not be limited on a re­
placement or substitution basis. Again, the stress-strain relation is 
fundamentally the same as the conventional material. It is conceptually 
simple. We must learn to take advantage of anisotropy. Do not elimi­
nate it for sake of simplicity. 
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8. homework problems

a. Derive the transformation of stiffness of a unidirectional composite
from one off-axis orientation to another.

b. Repeat the process above for the compliance.
c. Draw the generalized Mohr's circles for the stiffness of all the uni­

directional materials listed in Table 3.6 on the same scale. Locate the
position for the transformed shear modulus Q6 6• How would alu­
minum appear?

d. Show that stress-strain relations of an anisotropic material can be
expressed in terms of the p-q-r and the U's in the following tables:

table 3.18 
stress-strain relations in stiffness 

p€ q€ � 

Po- U"; + U4Q U2Q 2U6Q 

qO" U2Q 2U50+2U:,o 2U7Q 

ro- 2U60 2U70 2�0-2U30

table 3.19 
stress-strain relations in compliance 

p; qO" � 

p€ U1s + U45 U2s U6s 

q€ U2s 
I 

2U5s+2U:,s U7s 

U6s U75 r€ 2U55-2U:,s

Show how the tables can be simplified for orthotropic, square­
symmetric and isotropic materials. 

e. Find the locations of various key points on the transformed stiffness
curves in Figure 3. 7. These points represent the locations of the
inflection points, extremum values and slopes of tangents.

- I 
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��
x 

� _i., 
016, GPo 

/00 

50 

Figure 3.18 Key points in the transformed stiffness of T300/5208. 

f Repeat the process in Problem e for the boron-epoxy composite. Are 
there any unusual features for this composite? 

. g. Are there bounds for the Poisson's ratio of an off-axis unidirectional 
composite? What happens if fiber stiffness approaches infinity or 
matrix stiffness to zero? 

h. How can shear or normal coupling coefficients be used to create an
apparent infinite stiffness of an off-axis unidirectional composite
subjected to a biaxial normal and shear stress components (assuming
the other normal component a2 is zero)?
1) Derive the condition for zero resulting shear strain ( e6 = 0 ).

What is the resulting normal strain e 1 for this case?
2) Derive the condition for zero normal strain ( e 1 ::::= 0}. What is the

resulting shear strain e6 for this case?
3) If the applied stress components are:

(3.90) 
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Is it possible to have infinite shear (e6. = 0) or infinite normal 
stiffness (e 1 = 0) for T300/5208? How do you find the ply orien­
tation for each? 

4) Will the glass-epoxy ·composite work equally well for the stresses
in Equation 3.90? 

5) What principles emerge from this problem? Is complete rigidity
under biaxial stress possible? 

i. Derive the relationships between the invariants of the stiffness and
.those of the compliance for an orthotropic material.

j. Are there invariants associated with the transformed engineering con­
stants? An average Young's modulus can be defined from the area
under the transformed Young's modulus; e.g., in Figure 3.17. What is
the relation between this and that derived from the transformed
compliance (1 /U1 in Figure 3.12)?

k. What difficulties are involved for testing of an off-axis unidirectional
composite? What is the difference in response between the tubular
and flat specimens with -off-axis ply orientation? Examine the cases
of uniaxial extension, pure shear and hydrostatic pressure. What kind
of stresses are induced in the load introduction points (the ends)?
What load and displacement controls are desired for these tests?

I. A quick estimate (the back of an envelope calculation) of the off-axis
stiffness of a unidirectional can be based on only one on-axis stiff­
ness component (the others are zero):

(3.91) 

This was shown in Equation 3.46. The relation is easy to use and can 
readily be related to the fiber modulus such as: 

(3.92) 
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where subscript f refers to the fiber. Using T300/5208 data, estimate 
the off-axis stiffness at 1r/6, rr/4 and rr/3 radians. Show the error 
introduced by this estimate with the exact values listed in Table 3.5. 
Explain if this estimate works for the compliance components. 

-a 
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nomenclature 

a, b, c 
E1, E2 

£6 

11, 12 

m, n 

Q;j 
R 1, R2 

sii 
ui 

U'. 

a; 

€; 

V2 1, V1 2 

V61, V62 

V t6, V26 

0 
!::i. 

= Ratios of engineering constants 
= Young's modulus parallel and transverse to an off-axis 

unidirectional composite 
Longitudinal-transverse shear modulus of an off-axis 
unidirectional composite 
Linear or first order invariants of stiffness or compliance 

= cos0, sin0 
= Components of stiffness; i,j = x,y,s or 1,2,6 
= Quadratic or second order invariants of stiffness or 

compliance 
= Components of compliance; i,j = x,y,s or 1,2,6 
= Linear combinations of on-axis stiffness and compliance 

in the multiple-angle formulation. Same notation but dif­
ferent combinations are used for stiffness and compliance; 
i = 1 to 5 

= 

= 

= 

= 

= 

= 

= 

= 

Linear combinations of off-axis stiffness and compliance; 
i = l to 7 
On-axis components of stress, i = x,y,s; off-axis, i = 1,2,6 
On-axis components of strain, i = x,y,s; off-axis, i = 1,2,6 
Longitudinal and transverse Poisson's ratios of an off-axis 
unidirectional composite 
Longitudinal and tran.sverse shear coupling coefficients of 
an off-axis unidirectional composite 
Longitudinal and transverse normal coupling coefficients 
of an off-axis unidirectional composite 
Ply orientation 
Determinant of stiffness or compliance 
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chapter 4 
in-plane stiffness of 

symmetric laminates 

The stiffness of multidirectional laminates consisting of plies and ply 
groups with arbitrary orientations will be described. Those lamiriates 
with midplane symmetry will behave like homogeneous anisotropic 
plates. The stiffness modulus of the laminate is simply the arithmetic 
average of the stiffness of the constituent plies. We will also show that 
the stiffness properties of bidirectional laminates can vary significantly 
and be fundamentally different from conventional materials. Like uni­
directional composites, laminated composites can be described by three 
sets of elastic constants . The set consisting of stiffness components 
would be the easiest to use because of the simple property relationship 
between the laminate and the constituent plies. 

,:.:,·,: .· .·. :-:-:-:-:-:-:-;.:,;.;.:-: <<·> :-: .·. · ... ·. · ... ·.·. ·.� ·.' ..... · .·. ·.· ... ·.:.: .;-: <· :.:-:,: ... · 
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1. laminate code

A multidirectional composite laminate is defined by the following code 
to designate the stacking sequence of ply groups: 

(4.1) 

This code is represented diagrammatically in Figures 4.1 and 4. 2, and 
contains the following features: 

• Starting from the bottom of the plate, at z = -h/2, the first ply
group has three plies of 0-degree orientation; followed by the next
group with two 90-degree plies; followed by one 45-degree ply;
and finally the last group with three -45-degree plies. For
symmetric plate, the ascending order from the bottom face is
identical to a descending order from the top face or z = h/2. But
for unsymmetric laminates, the ascending order will have the
opposite laminate code as the descending order. We have arbi­
trarily decided the use of ascending order for this book.

• The subscript S denotes that the laminate is symmetric with
respect to the midplane or the z = 0 plane. The upper half of the
laminate is the same as the lower half except the stacking sequence
is reversed in order to maintain the midplane symmetry.

• A subscript T is used to designate the total laminate, without any
omission of the symmetrical upper portion of the laminate. If we
want to describe the laminate in Equation 4.1 using the total
designation, we will have

or (4.2) 

(4.3) 

In the last step, the two middle ply groups with -45 degree ply 
orientation were combined into one ply group. 

2. in-plane stress-strain relations for laminates

In the derivation of the stress-strain relation of a multidirectional 
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z 

Figure 4.1 Typical stacking sequence of a 
. symmetric laminate. The laminate code as 

stated in Equation 4.1 follows an ascending 
order from the bottom ply. 

-45

///2
1 

I 
I 

o, 

-///2 I 
I 

45 90 
6(Z) 

Figure 4.2 Ply orientations as function of z. 

This is another representation of Figure 4.1. 

laminate, we must make the following simplifying assumptions: 

• The laminate is symmetric; i.e.,

0(z) = 0(-z) 

and 

(4.4) 

(4.5) 

Thus, both the ply orientation and the ply material modulus are
symmetric with respect to the midplane of the laminate;

• The strain remains constant across the lamimlte thickness. We will
use superscript zero to signify the assumed constant in-plane strain
components as follows:

(4.6) 
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. Note that there is no z-dependency or z-variation across the 
laminate thickness. This assumption is reasonable when the thick­
ness of the laminate is small in comparison with the length and 
width and the laminate is symmetric. 

Since the stress distribution across the multidirectional laminate is 
not constant because the stiffness varies from ply to ply, it is much 
easier to define an average stress than an actual stress across the lam­
inate. This average stress can be used to define the stress-strain relation 
of the laminate. The stress, in this case, will be the average stress; and 
the strain, the in-plane strain in Equation 4.6. We can then calculate the 
stress at any ply within the laminate from the in-plane strain. We will 
show this later after the stress-strain relation for the laminate is estab­
lished. The average stress is defined as follows: 

- I
f

h/2
a 1 =- a 1 dz 

h -h /2

- l f 
h/2

a2 = -
a2dz 

h -h/2
(4.7) 

In Figure 4.3, we show the relationship between the actual stress from 
ply to ply and the average stress across the laminate by the averaging 
process of Equation 4. 7. 

Substituting the stress-strain relation for any ply orientation into 
Equation 4.7, we have 

(4.8) 

Substituting the assumed constant strain in Equation 4.6, we have 

(4.9) 
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z 

0 oj=N/h Oj(Z) 

Symm 

-h/2t------�

Figure 4.3 Definition of average 
stress. Comparison between the 
corresponding components of the 
actual ply stress and the average 
laminate stress is shown. 

Since the in-plane strain components are independent of z, we can 
factor them out of the integral signs. Only the stiffness components are 
left inside the integral because they vary from ply to ply depending on 
each ply orientation. 

Similarly, 

02 

where 

A11 

A12 

Ai 6 

= f Q11dz, A22 

= fQ12dz, A66 

= f Q16dz, A26 

(4.10) 

( 4.11) 

(4.12) 

(4.13) 

= fQzzdZ, A,2 = 
A21, 

= fQ66dz, A16 
= 

A61, (4.14)

= fQ26dz, A26 = A62· 
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where A;; is the equivalent modulus for a multidirectional laminate. 
This modulus is simply the average of the stiffness of the constituent 
plies. There is a difference of a length in the physical dimension of 
stiffness Q

u
in Pa or Nm -2; and that of A

u 
in Pam or Nm-1-.

We can further define stress resultants as 

(4.15) 

Note the unit of stress resultant is Pam or Nm- 1
, which is an integrated 

stress or force per unit width of a laminate with thickness h. The 
in-plane stress-strain relation for a laminate is actually the stress re­
sultant versus in-plane strain relation. The latter is derived by com­
bining Equations 4.15 with 4.11 et al. We have: 

NI = A I I €� + A I 2 €� + A I 6 €� 

(4. I 6) 

Thjs set of simultaneous equations can be inverted to yield the in-plane 
strain in terms of the stress resultant. This process is exactly the same as 
that described in Chapter 3, Section 5. 

Equation 4.16 is based on stiffness of the laminate, and we wish to 
find the corresponding compliance by inversion such that 

(4.17) 

We show both stress-strain relations in Equations 4.16 and 4.1 7 in 
matrix multiplication tables as follows: 

in-plane stiffness of symmetric laminates 121 

table 4.1 
in-plane stress-strain relation of symmetric 

laminates in terms of stiffness 

€ 0 

I 
€0 

2 
€0 

6 

N, A,, A,z A,6 

"4 A2, Az2 AH 

N6 A6I A6Z A66 

table 4.2 
in-plane stress-strain relation of symmetric 

laminates in terms of compli ance 

N, "4 N 6 

€0 

I a,, O,z 0,6 

€0 

2 02, 
022 026 

€ 0 

6 061 0
62 

066 

These stress-strain relations are valid for the in-plane deformation of 
�ymmetric laminates. If stress resultants are given, we can find the
mduced in-plane strain immediately from Table 4.2. Then the on-axis 
ply strain can be obtained by strain transformation from the initial J-2 
axes _to the orientation of a specific ply or ply group. The ply stress is
nothmg more than the ply strain multiplied by the on-axis stiffness. 
The complete process going from stress resultants to on-axis ply strain 
and ply stress is illustrated in Figure 4.4. 

From the compliance in Table 4.2, we can calculate the effective 
engineering constants, following the process used in the off-axis uni­
directional composites in Equation 3.68, et al. We will have typically 

In-plane longitudinal modulus = E� 

In-plane shear modulus = E°r, 

= 

= 

a66h (4.18) 
(continues) 
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In-plane Poisson's ratio = v� 1 

In-plane shear coupling coefficient = v� 1 

In-plane normal coupling coefficient = v� 6 

021 

(4.18) 
a6 6 

(concluded) 

Again we want to emphasize that engineering constants are the con­
stants associated with simple tests such as uniaxial tensile and compres­
sive tests and simple shear tests. They are the results of I-dimensional 
tests and represent I-dimensional characteristics of laminates. But com­
posites are rarely used in I-dimensional configuration. The 2-dimen­
sional properties of composites arc much different from the 2-dimen­
si'onal properties of conventional materials. The coupling coefficients 
are large. Their effects are not always intuitively obvious and can result 
in opportunities unique with composite materials. 

N2 

L N6 

-flr-N.� I 

-. 
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Resultants 

(:.0 
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L€: 
fflffl' - -

j €'.o 
� I 

(b) 
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r+ 
• 
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-�

1

-101 
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� 
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(c) 
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,.., :..)'o;
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�'._ 
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(d) 

On-Axis 
Ply 

Stress 

Figure 4.4 On-axis ply strain and stress calculations. From given stress 
resultants applied to a multidirectional laminate; we can go from (a) to 
(b ): use in-plane stress-strain relation in laminate compliance from 
Table 4.2. From (b) to (c): use positive strain transformation in Tables 
2.5 et al. The strain in Table 2.5 shall be replaced by in-plane strain. 
From (c) to (d): use the on-axis stress-strain relation of unidirectiona.! 
composites in terms of stiffness, in Table 1.6. 
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3. evaluation of in-plane stiffness modulus

We have only mentioned that the in-plane modulus of a multi-direc­
tional laminate .is the arithmetic average of the off-axis stiffness of the 
individual plies or ply groups. The averaging process is shown as inte­
grals in Equation 4.14. We will now describe the steps needed to per­
form the integrations so that the contribution of the ply stiffness to 
the laminate modulus can be defined. 

We want to mention again that in the averaging process of our 
laminate the modulus in Equation 4.14 is the off-axis stiffness of 
unidirectional composites. Using the transformed stiffness in Table 3.3: 

(4.19) 

� U1 J dz + U2 J cos20dz + U3 f cos40dz (4.20) 

The V's for a given composite remain constant. They can be factored 
out because they are not dependent on the z-axis. 

A11 = U1h + U2 V1 + U3 V2 

where the geometric factors are:* 

fh/2 

V1 = cos20dz 
-h /2

fh/2 

V2 = 
cos40dz 

-h /2

We can repeat the process for other in-plane components. 
- -

A 2 2 = U1 h - U2 V1 + U3 V2 

*A more general definition can be found in Equations 6.79-6.82.

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

- I 
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where

A16 = f Q16dz = f [ � U2sin20 + U3sin40] dz

I
= - U2 

V3 + U3 V4 
2
1 

A26 =
2

U2 V3-U3V4

fh/2
V3 sin20dz

-
h/2

fh/2
V4 = sin40dz 

-h /2

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

We have seen that the eyaluation of the in-plane modulus is reduced to
the evaluation of four geometric factors, defined by the. V's. These
relations can be summarized in a matrix multiplication table as follows.

table 4.3

formulas for in-plane stiffness modulus 

of laminates 

h l1z u, 

A
ll u, I{ � 

A22 u, -v, �
A,2 u

4 -�

A66 u
$ -Vz

A,6 
I 

2� �
A26 

I 

2 v, -�

where the V's, the geometric factors, can be defined as follows:

fh/2 

V[I,2,3,4] = [cos20, cos40, sin20, sin40] dz
-h /2 

(4.31)
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There are four V's that will completely determine the six components
of the in-plane stiffness of a laminate consisting of constituent plies of
the same material; i.e., the same U's in Table 4.3. There are therefore at
most four independent variables. This will be illustrated again in
Equation 4.33.

A condensed definition of the V's in Equation 4.31 means that the
numeral in the bracket on the left-hand side applies to the correspond­
ing term on the right-hand side of the equation. The value of V's is
dependent on the variation of ply orientations in the multidirectional
laminate. It is implicitly assumed that the laminate consists of plies of
the same unidirectional composite. Because sine and cosine functions
are bounded between -1 and !f--1, the V's are bounded by the same
limits, as we soon shall see. The similarity between Tables 4.3 and 3.3js
the result of using the same transformation equations. In the limit when
the laminate has only a ply orientation, we recover Table 3.3 from 4.3
because the integrands in Equation 4.31 are constant. The V's become
simply the trigonometric functions times the laminate thickness: 

V1 = h cos20

V2 = h cos40
(4.32)

V3 = h sin20

V4 = h sin40

From the formulas in Table 4.3, we have

or (4.33)

Similarly

Thus of the first four in-plane modulus components, only two are
dependent on the stacking sequence. If we know the first two, we can
immediately determine the others without integration. The variation of
the in-plane modulus is constrained by the invariants of the constituent
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ply. The number of degrees of freedom are limited to two among the 
four components of modulus in Equation 4.33. 

Let us now evaluate the first V in Equation 4.31. We first normalize 
it with respect to the laminate thickness: 

* V1 1
f

h/2 
V1 = 

-
= 

- cos20dz 
h, h -h/2

(4.34) 

Normalization is useful in two aspects; viz., first the V*'s become 
dimensionless and are valid for all physical units; SI, English, etc. 
Secondly, direct comparison can be made between the stiffness of 
laminate and that of the constituent plies. Table 4.4 can be compared 
with Table 3.3 component by component. The generalized Mohr's 
circles for the normalized in-plane modulus can be drawn directly over 
Figure 3. 9 so that the effect of lamination can be illustrated graoh­
ically. (This will be done in Figure 4.6.) 

If the laminate is symmetric, we only need to evaluate one 
half of the thickness, t,ay, from z = 0 to z = h/2. The new limits of inte­
gration call for a new interpretation of the laminate code as defined in 
Equation 4.1. The starting point of the ascending ply sequence has been 
reversed from the z = 0 to z = h/2. Only the upper half of a symmetric 
laminate needs to be evaluated. Thus, 

* 2 fh/2
V1 = - cos20dz 

h o 

(4.35) 

Since each ply group is assumed to have the same ply orientation and 
material, this integration can now be replaced by summation as we 
move from ply group to ply group: 

m /2

v';' = ¾ L cos20i[zi - zi- l L 
i= 1 

(4.36) 
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where hi = thickness of i-th ply group; where i begins from the mid­
plane. See Figure 4. 5 for the definitions of geometric terms. 

z,.,,,2 

Z; 

z 

i-th Ply Group 

----- -

Symm 

IT 
h; h/2 

T 

h/2 

_j_ 

Figure 4.S Definitions of terms 
in a symmetric laminate. The 
index for ply group goes from 
0 to m/2 when m is the total 
number of ply groups. 

Let vi = volume fraction of plies with 0i orientation 

= 2hi/h (4.37) 

If each index i in Equation 4.36 represents a unique ply orientation, we 
can now substitute Equation 4.37 into 4.36. 

where 

m /2 

v: = L cos20 i vi 
i= 1 

(4.38) 

(4.39) 

Thus, vt is simply the rule of mixtures equation, or the weighted 
average of the cos20 functions. Since cosine functions can never be 
greater than unity (or less than minus unity), each term in Equation 
4.38 is always equal to or less than the corresponding term in 4.39. We 
can therefore conclude that vt is bounded as follows: 

. � '1 ,,(� !', ..,.\(,:,J 1-., 
,... 5 •• • l,....,.-. t �';--�;':";•f.' _;,:b 1 �tO O - I � 

l.'.�- -==--- - ....,. 
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(4.40) 

By applying the identical process to the remaining V's in Equation 

4.31, we can get the following: 

(4.41) 

With these simple equations, we can easily compute the in-plane mod­

ulus of multidirectional laminates with any ply orientation. The infor­

mation needed is: the orientation and the volume fraction of each ply 

group. Then from Equations 4.38 et al. we can calculate the V*'s. From 
Table 4.3 we can compute the modulus for any multidirectional 
laminates. 

When normalized V's or V*'s are used, Table 4.3 can be rewritten in 

a matrix multiplication table as follows: 

table 4.4 

formulas for normalized in-plane 

stiffness modulus 

I Uz 

A"/h 0 v,* I 

Azz/h 0 -v.*
I 

A12/h U4 

4;s/l1 U5 

A16 /l1 .L v, *
2 3 

A2s/h ..L V. .. 
2 3 

U3 

v.* '2 

v.* 
2 

-v.*
2 

-vz*

v.*4 

-11.:*4 

We can now define the linear combinations of the in-plane modulus, 

in the same way those of the stiffness of a unidirectional composite are 

defined in Equations 3.15 and 3.21. 

-t-

I 
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Here subscripts -A and Q are added to differentiate the U's for the 

laminate from those for the unidirectional composite. 

Similarly, we can show from Table 4.4 

(4.42) 

We can now derive the two second-order in-plane invariants from 

Equations 3.22 and 3.24. These invariants correspond to the radii of 

the generalized Mohr's circles for a multidirectional laminate analogous 

to Equations 3.22 and 3.24, respectively: 

R1A = ✓ U2,l + 4U6J

(4.43) 
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R2A =J U3; 2 

+ U7A 

=J v;2 
+ V* 2 

4 U3Qh (4.44) 

R2A /h =J v; 2 + v: 2 R2Q 

We can easily show that the square root always has a value equal to or 
less than unity.* Therefore, the nonnalized radii of the generalized 
Mohr's circles for the laminate are always equal to or less than those of 
the constituent ply. The square root in Equations 4.43 and 4.44 defines 
the reduction in two radii in Figure 3.9 for a T300/5208 multidirec­
tional laminate. This is another indication of the constraints imposed 
on laminates by the transfonnation properties of a unidirectional com­
posite. In-plane modulus cannot be arbitrarily chosen with six degrees 
of freedom. 

Geometric interpretation of Equation 4.43 can be shown using the 
generalized Mohr's circles for T300/5208 unidirectional composite in 
Figure 3. 9. This is done in Figure 4.6 when nonnalized components of 
the in-plane modulus are superposed on those of the unidirectional ply. 
The radii for the Mohr's circles for the in-plane modulus are less than 
those of the constituent ply. The degree of anisotropy is reduced. The 
reduction in the radii is related to the V's which, in turn, are related to 
the stacking sequence or volume fractions of the constituent plies. The 
two phase angles in Figure 4.6 specify the starting points in the Mohr's 
circles. These points, shown in solid dots, are detennined by the orien­
tation of the reference coordinates of the laminate. The magnitude of 
the phase angles can be derived from the geometric relations in 
Figure 4.6. 

v: 
=--

Vi" 
(4.45) 

*Similar to Equation 4.40, we can show that: 

v' +v' +v' + ... +2v,v,cos2(0 1 -0
2

] + ... .;; (v, +v, +v, + ... ]' <:1 
1 2 3 

./ 

in-plane stiffness of symmetric laminates 131 

A12/h 

Figure 4.6 Generalized Mohr's circles for T300/5208 uni­
directional composite and normalized in-plane modulus of 
a laminate. 

The relations here are also shown in Appendix A. The existence of a 
symmetry axis is very important to the behavior of composite mate­
rials. For unidirectional composites orthotropic symmetry exists when 
both shear coupling tenns vanish simultaneously. This occurs along the 
horizontal axis in Figure 3.9. For the in-plane modulus of a laminate to 
have orthotropic symmetry, the phase angles above must be equal. 
Then by rotating the reference coordinate axes we can always have the 
starting points in Figure 4.6 along the horizontal axis. The most 
obvious case for the in-plane modulus to be orthotropic is for the phase 
angles equal to zero, then 

v: = v: = 0

4. cross-ply laminates

We will now examine some commonly encountered symmetric lam­
inates and determine the values of their in-plane· stiffness and 
compliance. 

First, we will study cross-ply composites. The ply orientations are 
limited to 0 and 90 degrees. In Table 4.5, all the values of the trigono­
metric functions which will be needed are listed. 

- l 
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table 4.5 

values of trigonometric functions for cross-ply laminates 

0 

90 

I 

-I

cos40; 

0 

0 

0 

0 

Substituting these trigonometric functions into Equation 4.38, et al., 
we have 

Based on the condition specified in Equation 4.45, this laminate is 
orthotropic. By taking these values and putting them into Table 4.4, we 
will have the normalized in-plane modulus for cross-ply composites as 
functions of volume ratios. This is done in Table 4.6· where matrix 
multiplication is implied. 

table 4.6 

formulas for in-plane stiffness modulus for 

cross-ply composites 

I Liz UJ 

A11/h u, Vo - Vs,o I 

A22
/h u, Vgo -vo I 

A12/h u
,. 

-/ 

A,;/h � -/ 

Note that only the first two components are affected by the volume 
fractions of the constituent plies in the laminate. The remaining four 
components are constant or zero. Cross-ply laminates are orthotropic 
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because the shear coupling terms are zero. If we substitute the defini­
tions of the U's from Equation 3.15 into the last two equations in 
Table 4.6, we will have: 

( 4.46) 

Following are some numerical examples of the in-plane stiffness and 
compliance of cross-ply laminates. T3OO/52O8 will be used as our 
sample material. The elastic modulus in terms of the U's is listed in 
Table 3.6. Combining the modulus data with the formulas in Table 4.6, 
we arrive at the following expressions in GPa: 

A 1 i/h =76.37+[v0 -v90 ]85.73+19.71 

A22/h = 76.37-[v0 -v90 ]8S.73 + 19.71 

A 12 /h = 22.61-19.71 = 2.90 

A66/h = 26.88-19.71 = 7.17 

(4.47) 

The results from these equations are plotted in Figure 4. 7, using the 
volume fraction of 90-degree plies as the abscissa. Note that the rule of 
mixtures relations apply in the first two components. Both are linear. 
The other two nonzero components in Equation 4.47 are constant for 
all volume fractions. 

We calculate the compliance components by inverting the stiffness at 
a given volume fraction. The inversion process though must be repeated 
for each fraction. Let us take the volume fraction 50 percent. The 
modulus components are, in GPa: 

Using the matrix inversion method described in Equations 3.64 and 
3.65, we have the following solutions where we substituted the in-plane 
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Figure 4.7 In-plane stiffness and compliance of cross-ply composites. The Poisson 
and shear components are constant and independent of volume fractions; the normal 
stiffness components are linear but the compliance components are not. 

components of the laminate for those of the unidirectional: 

(4.4 9) 

a16 =a26 =0 

Typical values of cross-ply laminates are listed in Table 4. 7. If our 
laminate has 16 plies with the following unit ply thickness of: 

12 5 X 10-6 m 

(4. 50 ) 
2 X 10-3 m 

in-plane sti f fness of symmetric laminates 135 

Representative unnormalized components of the in-plane stiffness and 
compliance of this laminate are: 

table 4. 7 

A11 = 96.08h = 192.16 MNm- 1 

a11 = 10.41/h = 5.2 0 5  (GN/m)- 1 
( 4.51) 

normalized in-plane stiffness and compliance of TJ00/5208 cross-ply laminates, 
GPa and (TPa)-1• respectively.

[0/90] 
[02 /90] 
[04 /90] 
[0s/90] 

[0/90] 
[02/90] 

[04/90] 

[0s/90] 

A11/h 

96.08 
124.65 
147.5i 
162. 75 

011h 

10.41 
8.03 
6.78 
6.15 

A22/h 

96.08 
67.50 

44.63 
29.39 

a22h 

10.41 
14.82 

22.43 
34.07 

A12/h A66/h A16=A26 

2.89 7.17 0 
2,89 7.17 0 

2.89 7.17 0 
2.89 7.17 0 

D12h a66h 016=a26 

-.314 139.47 0 
-.344 139.47 0 

-.440 139.47 0 

-.606 139.47 0 

Because of the constraints imposed on the in-plane modulus by the 
invariants of the constituent ply cited in Equation 4.33, cross-ply lam­
inates can have only one variable. Of the six possible components of 
in-plane modulus, the shear coupling terms are zero. Of the remaining 
four, the Poisson and shear components are fixed by the respective 
components of the constitu-ent ply. Of the remaining two normal com­
ponents, only one can be free because the sum of these components 
must be invariant; i.e., 

[A11 + A22 l /h = 96.08 + 96.08 = 12 4.6 5 + 67.50 ... = 192.16 

Thus the only degree of freedom is the value of one of the components 
above. There is an additional constraint implicit for all laminates; i.e., 
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From the compliance components, we can get the following engi­
neering constants using Equation 4. 18: 

E<t 1/10.41 = 96.0 GPa 

1/139 = 7.17 GPa 

vf 1 = 0.3141/10.41 = 0.0301 

(4.52) 

Since cross-ply laminates are orthotropic, we could have calculated and 
obtained the same engineering constants in Equation 4.52 from those 
in-plane modulus components in Equation 4.48 directly using the rela­
tions in Equation 1.13. 

m m 

where m = 

then Ef =

96·08
= 96.0 GPa 

1.001 

[I - 2.902 ]-I 
= 1.001 

96.082 

This agrees with the longitudinal modulus in Equation 4.52. 

(4.53) 

The constraining effect of the 90 degree ply is responsible for the 
low Poisson's ratio. The value of mis almost unity, therefore 

This is true only for cross-ply composites. As we have seen Equation 
4.47 follows the rule of mixtures relation. We can then say the Ef will 
follow approximately the same relation. This simple relation will hold 
for laminates only if they are orthotropic and have very small effective 
Poisson's ratios. 

5. angle-ply laminates

Angle-ply laminates form another very common class that deserves 
special attention. In this class, there are only two ply orientations 
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which have the same magnitude but opposite signs. The laminate is 
balanced when there are equal numbers of plies with positive and nega­
tive orientations. 

Thus for angle-ply laminates we have: 

01 = +<t>, 0 2 = -q, 

and V1 = V2 =-
2 

Substituting these values into Equation 4.38 et al., 

v; = ½(cos2</> + cos2</>) = cos2</> 

v; = cos4</> 

v: = v: = 0 

This laminate is orthotropic because of Equation 4.45. 

(4.54) 

(4.55) 

The formulas for the in-plane modulus for angle-ply laminates are 
listed in Table 4.8, where.matrix multiplication is implied. They are 
obtained by substituting the values from Equation 4.55 into Table 4.4. 

Note that the first four rows of this table are identical to those in 
Table 3.3 for the unidirectional modulus except where the ply orienta­
tion 0 in Table 3.3 is replaced by the angle </> in the angle-ply laminate. 
The shear coupling terms vanish for the angle-ply laminate because of 
the last line in Equation 4.55. 

table 4.8 
formulas for in-plane stiffness modulus for 
angle-ply laminates 

I ½ u, 

A11
/h u, cos2¢ cos4¢ 

--;422/h" tJ. I 
-cos2¢ cos4¢ 

A12 /h U4 -cos4¢

A66/h ¼ -cos4¢
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Because of the similarity between this table and Table 3.3, we can 
immediately convert the numerical results for T300/5208 in Figure 3.5 
by simply replacing 0 by ±</) and deleting the shear coupling terms. The 
comparable components of in-plane modulus for T300/5208 angle-ply 
laminates as functions of±</) are equal to those in the first four columns 
in Table 3.5. The last two columns are zero. 

For [45/-45] angle ply, we have 

cos2</) = 0, cos4</) = - I 

Using the data for T300/5208 from Table 3.6, we have from the 
formulas for in-plane modulus in Table 4.8 

A11 /h =A 22 /h=76.37 - 19.71 =56.66GPa 

A12 /h = 22.61 + 19.71 =42.32GPa 

A66/h = 26.88 + 19.71 = 46.59 GPa 
(4.56) 

With the exception of these shear coupling terms, these values are iden­
tical to those for 0 = 45 degrees in Table 3.5. The in-plane modulus of 
�ngle-ply laminates is listed in Table 4.9 and plotted in Figure 4.8. 
Using the inversion method applied in Equation 3.65, we have for the 
[ 45/-45] from Equation 4.56: 

Mii = 66.126 X I 03 0 h 3 (Pa)3 

G11h = a22h = 39.91 (TPar 1 

a12h = -29.81 (TPa)- 1 (4.57) 

a66h = 21.46 (TPar1 

G16 = a2 6 = 0 (TPar1 

�hese _compliance values together with those for other values of cp are
hsted m Table 4.9 and are shown as solid lines in Figure 4.9. The 
dashed lines are the transformed components of the compliance of 
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unidirectional composites taken from Figure 3. 11. The big difference 
between the two lines (dasl:�d versus solid) is due to the matrix inver­
sion with or without the shear coupling terms. The off-axis uni­
directional composite is anisotropic and the angle-ply laminate is 
orthotropic. 

table 4.9 
normalized in-plane stiffness and compliance of T300/5208 

angle-ply laminates, GPa and (TPa)- 1

0 

15 

30 

45 

60 

75 

90 

±<f> 

0 

15 

30 

45 

60 

75 

90 

A11/h 

181.8 

160.4 

109.3 

56.6 

23.6 

11.9 

10.3 

5.52 

6.80 

15.42 

39.91 

71.36 

91.2-1 

97.08 

A22/h 

10.3 

11.9 

23.6 

56.6 

109.3 

160.4 

181.8 

97.08 

91 .21 

71.36 

39.91 

15.42 

6.80-

5.52 

A12/h 

2.90 

12.75 

32.46 

42.32 

32.46 

12.75 

2.90 

- 1.54

- 7.24

-21.18

-29.81

-21.18

- 7.24

1.54

7.17 

17.02 

36.73 

46.59 

36.73 

17.02 

7.17 

0 

0 

0 

0 

0 

0 

0 

139.47 0 

58.73 0 

27.22 0 

21.46 0 

27.22 0 

58.73 0 

139.47 0 

The engineering constants for off-axis unidirectional composites will 
also be completely different from those for angle-ply laminates. The 
engineering constants for </) = 45 degrees, which is simply the 
±45-degree angle ply, can be obtained directly from the results in 
Equation 4. 57 using the relations in Equation 4.18: 

Ef = Ef = l/a 11h = 39.9i-1 = 25.05 GPa 

Eg = 1/a66h = 21.46- 1
= 46.59 GPa 

vf1 = -a1 2/a11 = 29.81/39.91 = 0.746 

(4.58) 

- I 
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Figure 4.8 In-plane stiffness of angle-ply laminate of T300/�208 
composite. With the exception of the non-zero shear coupling com­
ponents, the curves above are identical to the transformed modi:lus of 
unidirectional T300/5208 shown in Figure 3.5 where the coordinates 
are defined in the parenthesis. The curves here are the laminate stiffness 
as a function of lamination angle cf> • 

The corresponding engineering constants for an off-axis unidirectional 
T300/5208 were calculated from the data in Table 3. I 2: 

E6 = 105.T 1 = 9.46 GPa 

V21 = 9.99/59.75 = 0.167 

(4.59) 

Compare like constants in Equations 4.58 and 4.59; we see that the 
values for angle-ply laminates are much higher than the off-axis uni­
directional. The Poisson's ratios of 0. 746 exceed the upper limit for 
isotropic materials, which is I /2. This is theoretically admissible for 
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Figure 4.9 In-plane compliance of T300/5208 angle-ply laminates. The 
solid lines are based on the data in Table 4.8, and are not transformation 
curves. The dashed lines, taken from Figure 3.11 are the transformed 
components of compliance of the same unidirectional composite, with 
the coordinates defined in parenthesis; i.e., 8 vs S;j· Close similarity 
between A;/h and Qii 

does not exist between a;-h ands ... The shear 
coupling components are responsible for the differences1between the
solid and dashed lines. 

non-isotropic materials. The comparison of these engineering constants 
between off-axis unidirectional and angle-ply laminates as functions of 
ply orientation 0 and lamination angle ±¢ are shown in Figure 4. 10. 
The significant increase in the angle-ply laminates over that of the 
off-axis unidirectional over the entire range of angles is very apparent. 
The increase is caused by the constraining influence imposed on each 
ply within a laminate. The plies are.bonded together and are not free to 
deform independently. 

There is an important message here. Laminates are governed by very 
rigorous conditions such as those in Equation 4.6. Laminates cannot be 
modeled by a one-dimensional arrangement of parallel springs. Plies 
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within a laminate are constrained and interact with one another. It is 
not always intuitively obvious when we add or subtract plies from a 
laminate if we arc actually helping or hurting the stiffness and the 
strength. The key is to understand the ply-to-ply interaction and to 
adhere to the mathematical models faithfully. 
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Figure 4.10 Comparison between engineering constants of angle-ply and unidire�-
tional composites. The variations of these constants are shown as dashed and solid 
lines. The dashed lines are identical to the solid lines in Figure 3 . 1 7.

6. quasi-isotropic laminates

If the following conditions for the in-plane modulus of a laminate are 
satisfied, the laminate is quasi-isotropic: 

(4.60) 
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The last relation is analogous to that for the on-axis stiffness in 
Equation 1.23. With the last constraint we have one less degree of 
freedom than the cross-ply laminate cited in Table 4. 7. We have no 
freedom at all! If we construct a quasi-isotropic laminate out of a given 
material its normalized in-plane properties are predetermined. We 
cannot change them unless we use a different material. There are 
numerous stacking sequences for this laminate. 

Intuitively, if ply orientations are random, we would expect an iso­
tropic laminate. Directionality would disappear. For example, chopped 
fiber composites are quasi-isotropic. If we examine Equation 4.31, 
which defines the V's, it is reasonable to expect these geometric 
factors to vanfsh. Physically, wheri there is equal probability of 
fibers oriented in any direction, or there is a continuous variation in 
fiber orientation, the cyclic terms in Table 4.3 as defined by the V's 
will vanish. The in-plane modulus components will converge toward the 
invariants in the first column of the table. The in-plane modulus 
becomes: 

(4.61) 

The conditions for isotropy in Equation 4.60 are satisfied because of 
the relations between the invariant� as described in Equation 3.20. We 
have a quasi-isotropic material. 

Since this is an isotropic material, we can find the quasi-isotropic 
engineering constants, as follows: 

From Equation 1.13, 

(4.62) 

From Equation 1.23, 

E = 2(1 + v)G = 2 [1 + �:] U5

- I 
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If we use the values of U's for T300/5208 from Table 3.6, we have 

V = 22.61/76.37 = 0.296 

G = 26.88 GPa 

E = 2(1 + 0.296)26.88 = 69.67 GPa 

(4.63) 

There are other than random orientations that will produce quasi­
isotropic laminates. Let us examine the following two laminates: 

[0/60/-60ls, and [0/90/45/-45ls 

For the first laminate, we have from the definitions of V*'s in Equation 
4.38 et al., 

v; = .!. [cos0 + cos l20 + cos(-120)] = 0
3 

v; = .!. [cos0 + cos240 + cos(-240)] = 0
3 

v; = .!. [sin0 + sin l 20 + sin(-120)] = 0
3 

v: = .!. [sin0 + sin240 + sin(-240)] = 0 
3 

For the second laminate, we have: 

(4.64) 

Vi* = .!. [ cos0 + cos 180 + cos90 + cos(-90)]
4 

= 0 (4.65) 
(continued) 
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v; = .!. [cos0 + cos360 + cos l80 + cos(-180)] = 0
4

v; = .!. [sin0 + sin I 80 + sin90 + sin(-90)] = 0
4 

+ sin360 + sin l 80 + sin(-180)] = 0 (4.65) v: = .!. [sin0 
4 (concluded) 

Since all the V's are zero, the laminates are quasi-isotropic. In fact, we 
can generalize that any laminate with "m" ply groups spaced at ply 
orientations of Pi/m radian will be quasi-isotropic. In the first case we 
had m = 3; in the second case, m = 4. Moreover, with symmetric 
laminates we must double the number of ply groups within a quasi­
isotropic laminate. The minimum number of plies are 6 and 8, respec­
tively. The first laminate is also called Pi/3; and the second Pi/4. For 
quasi-isotropic laminates we have no freedom because the stacking 
sequence is fixed and the resulting stiffness is also fixed. 

There is a very practical reason for quasi-isotropic laminates beyond 
being isotropic like conventional materials. This configuration repre­
sents the minimum performance that we can expect from a composite 
laminate. If we are uncomfortable in dealing with directionally varying 
properties, we can always use the quasi-isotropic laminate. A direct 
substitution of this laminate for the conventional material can be done 
without hesitation because this substitution is no different from the 
substitution of conventional materials. 

The quasi-isotropic Young's modulus of T300/5208, as listed in 
Equation 4.63, is equal to the Young's modulus of aluminum. But there 
is a minimum of 40 percent savings in weight. When directionality is 
judiciously added, the advantages of composites are overwhelming. 

The quasi-isotropic laminates can be used as the starting point of 
optimization of ply orientation. If minimum weight is a criterion, the 
quasi-isotropic laminate should be the upper bound of the weight. An 
optimized material taking full advantage of the directionality of proper­
ties should only have lower weight than the quasi-isotropic con­
figuration. 
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7. general Pi/4 laminates

This is a family of laminates having four ply orientations sl?aced at 
45-degree intervals. The normal Pi/4 laminates have four ply gro�ps
with equal thickness and are therefore_ quasi-iso_tropic. Gener�! Pi/4
laminates refer to those with arbitrary thicknesses m ply groups, includ­
ing the limiting cases of zero thickness _for one or n:iore ply groups. We
will now list all the trigonometric funct10ns and their values for our ply 
orientations in Table 4.10. 

table 4.10 

values of trigonometric functions for in-plane modulus of 
g�n�ral Pi/4 laminates 

0, cos201
cos401 sin201

sin401

0 0 0 

90 -1 1 0 0 

45 0 -I 0 

-45 0 -1 -1 0 

Substituting these values into Equation 4.38 et al., we have 

v:= o

(4.66) 

With these values, the formulas for in-plane modulus in Table 4.4 can 
be specialized for our general Pi/4 laminates. This is done in a matrix 
multiplication table as follows. Note when all the v 's are equal, we 
recover the quasi-isotropic laminates. When the ±45-degree plies are 
zero, we recover the formulas for cross-ply laminates listed in Table 4.6. 
When we have a special angle-ply laminate with the lamination angle</> 
equal to 45 degrees, we recover from Table 4.11 the special ±45 lam-

, inate from Table 4.8. Finally, Pi/4 laminates are orthotropic when the 

in-plane stiffness of symmetric laminates 147 

45-degree plies are balanced, or when

When this is true, the shear coupling components become zero. 

table 4.11 

formulas for in-plane stiffness modulus of 
general Pi/4 laminates 

I UR 
U

:, 

A11 /h u, vo-"9o Vo +v
.90 

-&i45 
-v.45 

A
R
/h u, -vo+v90 '6 +"9o -v,.., -11.,.5 

42/11 u .. -vo -vgo +v .. 5 +v.,.5 

A✓h 1./2 -vo -vgo +v .. ., +v..,.5 

A,5/h -J[v .... -v. .. J 
A

2
/h J[v,.5-v ... J 

(4.67) 

The formulas in Table 4.11 can be represented by a series of 
diagrams or plots. First of all, the components of stiffness are all linear 
functions of the ply fractions. The components are proportional to four 
linear combinations of the ply fractions; viz., v0, v 90, v4 5  + v_

45 and 
v 4 s - v _ 

45 . In Figure 4.11 we show the in-plane modulus of general 
Pi/4 laminates for T300/5208 composite. The first chart shows 
component A 1 1 /h. This chart is valid for balanced as well as un­
balanced laminates; i.e., independent of the values of v4 5  and v_

45
• 

The same can be applied to the second chart on components A 1 2 /h and 
A66/h. Component A 22 /h is not shown because it can be found by 
interchanging v0 with v 9 0 from the A, 1 /h chart. Only in unbalanced 
laminate (that is the +45 has a different number of plies from the -45) 
will the last chart in Figure 4.11 become necessary. 

The open hexagon in each diagram represents the properties of the 
quasi-isotropic laminate. Note all relationships in Table 4.11 are de­
scribed by straight lines. This did not happen by accident. In fact, it is 
important to choose the correct parameters so linear relationships exist 
between the ply and the laminate properties. The correct property set 
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Figure 4.11 In-plane modulus of general Pi/4 laminates of 
TJ00/5208 composite. Quasi-isotropic points are shown as 
op.en hexagons. 

for the stiffness of a laminate is the stiffness modulus of the unidirec­
tional composites. If another property set is chosen, nonlinear relation­
ship would result. For example, when the property set of engineering 
constants is chosen, the straight lines in Figure 4.11 will be replaced by 
curved lines. In fact the curved lines have been referred to by a trade 
name: the carpet plot. The moral of the story is that stiffness modulus is 
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the simplest property for the description of the stiffness of laminated 
composites. The carpet plot is an unnecessarily complicated way of 
showing properties of composites. 

8. general bidirectional laminates

We have seen earlier two classes of bidirectional laminates, viz., cross­
ply and angle-ply laminates. Both laminate classes are orthotropic. We 
have seen unique properties of laminates that do not have a counterpart 
in conventional materials. For example, the in-plane Poisson's ratio, 
shown in Figure 4.10, extends beyond the upper limit of 1 /2 imposed 
on isotropic materials. While orthotropic materials can be viewed as a 
simple ex tension of conventional materials, nonorthotropic materials, 
however, must be viewed from a completely different viewpoint. We 
must understand the unique properties of anisotropic materials and 
learn to capitalize on these properties to perform functions not possible 
with conventional materials. In this section, we will illustrate how 
simple, unique properties can be derived from general bidirectional 
laminates. 

A general bidirectional laminate consists of two arbitrary ply orienta­
tions and ply ratios. In Figure 4.12 we show the two orientations. The 
two orthogonal bisectors would be the symmetry axes if the two ply 
orientations are balanced; i.e., the ply ratio is unity . 

Figure 4.12 Orientations of general 
bidirectional laminates. 
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In terms of the angles shown in Figure 4.12, we have 

We will introduce another variable: 

Vi 
p = ply ratio = -

112 

(4.68) 

(4.69) 

where the v's are the volume fractions of ply orientations. This was 
defined in Equation 4.37. From Equations 4.38 et al., we can imme­
diately define for all bidirectional laminates. 

v* 2 

We have a general cross-ply laminate when: 

</> = 45 degrees 

By combining this with Equations 4.68-4. 70, we have 

v* i 
= (v 1 - v 2 )sin2-y 

V2* -cos4-y 

v: = -(v 1 - v2 )cos2-y 

v: = -sin4-y 

(4.70) 

(4.71) 

(4.72) 

This is an off-axis cross-ply laminate. The rigid body rotation of the 
laminate is specified by -y. This laminate becomes the usual cross-ply 
laminate when 

'Y = 45 degrees (4.73) 

1 

l 
' 
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Equation (4.72) becomes: 

v* 2 

We have recovered the formulas in Table 4.6. 
We have a general angle-ply laminate when: 

(4.74) 

'Y = 0 (4.75) 

We can easily show by combining this with Equation 4.68 et al. 

v* I 
= cos2</>

v; = cos4</>

(4.76) 
v: = -(v i - v2 )sin2</> 

v: = -(v i - v2 )sin4</> 

This is a general angle-ply laminate when it is not balanced. When we 
have a balanced laminate, 

(4.77) 

Then Equation 4. 76 becomes the same for the usual angle-ply laminate 
shown in Table 4.8. It is intuitively obvious that the magnitude of the 
shear and normal coupling is related to the degree of the imbalance. 
Equation 4. 77 is still a rule of mixtures relation that goes from + 1 to 
-1 ,with zero at the midpoint.

As an illustration of the range of properties for a general bidirec­
tional laminate, we take: 

<I> = 30 degrees 

'Y 
= -90. to 90 degrees (4.78) 

l 1 
p

= 0,9'4' 1, 4, 9, 00 
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Note the two limiting values of the ply ratio correspond to unidirec­
tional composites with +30 and -30 degrees orientations, respectively. 

For the complete characterization of the stiffness of a symmetric 
laminate, the following material constants are useful for various 
purposes. 

1. Six normalized components of stiffness: A;/h
2. Six normalized components of compliance:· aii

h
3. Two Young's modulus: Ef, Ef
4. Shear modulus: E�
5. Two Poisson's ratios: v� 1 and v� 2 

6. Two shear coupling coefficients: v� 1 and v� 2 

7. Two normal coupling coefficients: v� 6 and v� 6 

8. One ratio of Young's moduli: a = Ef /Ef
9. Two ratios of Young's to shear moduli:
We must keep in mind that not all the elastic constants above are

independent. From Equation 4.33 we can conclude that there are at 
most four independent constants among the six components of the 
in-plane modulus. Thus, it is safe to say that we cannot manipulate the 
efastic constants of a laminated plate at will. There are constraints. 
When we increase one constant such change will induce other changes 
in accordance with the law of transformation and its invariants. 

We will show the variations of some typical elastic constants of 
general bidirectional laminates. The material used is T300/5208. The 
definition of the angles follow those in Figure 4.12. The ply ratio p as 
defined in the Equation 4.69 is also shown of each of the following 
figures: 

1. A typical component of stiffness is shown in Figure 4.13 (top).
This is a shear/normal coupling component. The two limiting cases
which correspond to the ply ratios of infinity and zero are the upper/
lower bounds of the component of the stiffness. Furthermore, the
usual lever rule for phase diagrams applies. This is not surprising
because the stiffness component of a laminated composite is ob­
tained by a straight averaging or the rule of mixtures relation.

2. A typical component of the in-plane compliance is shown · in
Figure 4. l 3(bottom). The same notation used in the previous figure
applies. Note that the compliance components as a result of the
changes in the ply ratio are essentially bounded by the two limiting
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Figure 4.13 Typical components of stiffness and compliance of 
TJ00/5208 bidirectional laminates. 

y 
0 

y 

cases. There are exceptions but the difference is very small for this 
material. There is, however, a very drastic change in the magnitude of 
the comp611.erifof compliance as one goes from all -30 degree uni­
directional ply (p = infinity) to the case where the ply ratio becomes 
9 I l .  In other words, a IO percent change in the ply orientation can 
result in over I 00 percent changes in the resulting components of 

- - I 
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compliance. The lever rule is not applicable for this component. The 
range of variation for this component covers both the positive and 

the negative values. This can provide complete reversals in the 

response of materials if it is so desired. 

3. The longitudinal Young's modulus for a general bidirectional

laminate is shown in Figure 4.14(top). The magnitude of the
modulus is no longer bounded. Needless to say the lever rule will not
apply either. The magnitude remains positive which is required for
the diagonal terms in the stiffness matrix in order to insure material
stability.

4. The ratio of the Young's to shear moduli is shown in Figure
4. l 4(bottom). This ratio is a measure of the bending stiffness to
shear rigidity. This ratio is often referred to as the EI/GJ where/ and
J are moments of inertia of the cross-section of a structure, and E
and G are the Young's and shear moduli of the material. Note that
the ratio is essentially bounded by the limiting cases although the
lever rule does not apply. Wide variations of this ratio are possible by
changing the ply ratios or ply orientations. This component remains
positive as its required from the stability standpoint.

5. The longitudinal Poisson's ratios is shown in Figure 4.15(top).
This ratio is no longer bounded by the limiting cases. Poisson's ratios
can be zero as well as negative which is not permissible for the
conventional material. Note the steep descend of the Poisson's ratio
near 30 degrees, a small change in angle can result in great changes in
this ratio. Further, the ratio near this angle is insensitive to the
change in ply ratios as we go from 1 /1 to 9 / 1.

6. The normal coupling coefficient is shown in Figure 4.1 S(bottom).

This coefficient is essentially bounded by the limiting cases. The
lever rule however does not apply. There is, again, a wide variation of
the magnitude of this coefficient covering both the positive and
negative values. Again, near 30 degrees this coefficient is insensitive
to the changes in ply ratios, for example, as we go from zero to

infinity.

We have just displayed some typical examples of the elastic constants 
of general bidirectional laminates. It appears that only the components 

of the stiffness can be readily anticipated in that the rule of mixtures 

equation and the normal lever rule apply. The "carpet plot' is 
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Figure 4.14 Longitudinal Young's modulus and the ratio of extension to shear 
modulus of T300/5208 bidirectional laminates. 

linearized as shown in Figure 4.11. Such simple, linear relationships no 
longer exist in the case of the components of the compliance and the 
engineering constants. It is very difficult to bound or visualize the 
magnitude of the change as we change ply orientation or ply ratios. 

Whatever methodology or algorithm is used for the design and optimi­

zation, we must appreciate the possible variations of the elastic behav­

ior as the laminate becomes fully anisotropic. Both ply orientation and 
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Figure 4.15 Typical coupling coefficients of T300/5208 bidirectional 
laminates. 

y 

y 
0 

ply ratio are variables. These figures are intended to demonstrate the 
range of variability and the sensitivity as a function of stacking se­
quence for typical bidirectional laminates. 

It is difficult to characterize multidirectional laminates with three or 
more distinct ply orientations. It appears safe to say that as the number 
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of ply orientations increase, the resulting elastic constants will approach 
those of the quasi-isotropic laminates. Should this be the case bidirec­
tional laminates are unique because they can provide the widest varia­
tion of properties. These laminates can have properties with greater 
variations than the unidirectional constituent plies. 

9. ply stress and ply strain analysis

Following the process outlined in Figure 4.4 we can readily calculate 
the stress and strain at any ply within a symmetric laminate under 
arbitrarily applied stress resultants, The motivation for the determina­
tion of the stress and strain at a ply level is for the assessment of ply 
failure. In a multidirectional laminate subject to in-plane strains or 
stress resultants it is necessary to examine ply by ply or ply group by 
ply group to determine if any of them has failed or about to fail. The 
failure criterion for the plies will be covered in Chapter 7. We are only 
outlining the method for the ply stress and ply strain analysis which is a 
prerequisite for the eventual failure determination. 
_ We will now_ lis!a few �imple examples. 

1. Determine the ply stress and ply strain of a T300/5208 [ 0 4 / 90 4 ] s
laminate subjected to a uniaxial stress resultant of 1 MN/m.

From Equation 4 .50 and Table 4. 7, using unit -ply thickn.ess of
125 X 10-6m.

h = 16 X 125 X l o-
6 = 2 X l 0-3 m 

a11 = 10.41/2 X 10-3 = 5.21 (GN/m)- 1 

(4.79) 
a21 = -.314/2 X 10-3 =-.157(GN/m)- 1 

From the stress-strain relation of Table 4 .2 

Ef =-.157Xl0-3 (4.80) 
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For the 0-degree ply, the on-axis stress and strain are: 

€x 
= 5.21 X 10-3 

€y = -.I 57 X 10-3 (4.81) 

€s = 0 

From the on-axis stress-strain relation of Table 1.6 and the
modulus in Table 1.9, 

a
x = 181.8 X 5.21 - 2.89 X .157 = 946.7 MPa 

a
y 

= 2.89 X 5.21- 10.34 X .157 = 13.4 MPa 

a
5 

= 0 

For the 90-degree ply, the normal strains are interchanged: 

€x 
= -.157 X 10-3 

€y 
= 5.21 X 10-3 

€s 
= 0 

a
x 

= -181.8 X .157 + 2.89 X 5.21 = -13.4 MPa 

a
y 

= -2.89 X .157 + 10.34 X 5.21 = 53.41 MPa 

a
s 0 

We can compute the average stress to verify equilibrium: 

a1 = ½(946.7 + 53.41) ""500 MPa 

02 
= 0 

a6 = 0 

(4.82) 

(4.83) 

(4.84) 

(4.85) 
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We can recover the stress resultants given originally: 

N1 = a1 h = 500 X 2 = 1 MN/m 

If we use the maximum strain failure criterion (Problem h in
Chapter I) which states that failure occurs when: 

I. € x > 8 X 10-3 or 

(4.86) 

(4.87) 

Examining the on-axis strains, we can conclude that the 90-degree
ply has failure because 

5.21 > 4 (4.88) 

In fact, the 90-degree ply failed when the applied stress resultant is 

4 (4.89) Nl(FPF) = I X- = .767 MN/m5.21 

where subscript FPF refers to the "first ply failure" stress level. 
The second or ultimate ply failure will occur when the 0-degree
ply fails. Using the same failure criterion, the ultimate stress re-
sultant is 

N l(max) = 1 X -- = 1.53 MN/m (4.90) 
5.21 

2. Examine the same cross-ply laminate under compressive loads and
determine the first and ultimate failure stress resultants or average
stresses. 

Assuming that the maximum strain failure criterion 

€xi> 
7 X 10-3

e
y I > 20 X 10-3 

(slightly less than tensile strain) 
(4.91)

(much more than tensile strain) 
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For the 90-degree ply, the induced strains have opposite signs, 

I x-
8- = 50.9 MN/m, (tension), or 

.157 

I X � = 3.83 MN/m (compression) 
5.21

For the 0-degree ply, 

(4.92) 

1 X _7_ = 1.34 MN/ m, (compression), or · 
5.21

(4.93) 
1 x-

4- = 25.4 MN/m (tension)
.157 

Note the first-ply failure now occurs in the 0-degree ply at an 
average stress of 

a 1 (FPF) = 
1.34 /2 X 10-3 = 672 MPa 

(4.94) 
al (max) = 3.83/2 X 10-3 

= 1910 MPa 

3. Determination of shear stiffness from a 45-degree angle-ply
laminate.

For our laminate, we know from Equation 4.57,

39.91 (TPaf1 

(4.95) 

Under a uniaxial stress of 

100 MPa (4.96) 

£f = 39.91 X 100 = 3.99 X 10-3 

£f = -29.81 X 100 = -2.98 X 10-3 (4.97) 

€z = 0 
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If we transform both the stress and strain -45 degrees, and call 
the new axes I' and 2 ', from Table 2. l ,  

From Table 2.5, 

Ef' ½(3.99-2.98) = .50 X 10-3 

Ef = 3.99 + 2.98 = 6.97 X 10-3 

(4.98) 

(4.99) 

In the I '-2' coordinate system, our laminate is a cross-ply laminate 
subjected to the stress and strain above. Since the stress-strain 
relation is orthotropic, the shear components in stiffness and com­
pliance are uncoupled. A direct relation exists. The resulting shear 
modulus is, 

I 

a6 50 A 66 /h = - = ---- = 7.17 GPa 
Et 6.97 X 10-3 

(4.100) 

This agrees with the result of Equation 4.47. We can take advan­
tage of the transformation properties of stress and strain to con­
vert the uniaxial tensile or compressive stress applied to a 45-
degree angle-ply to a shear test. In terms of the applied stress and 
measured strain in the symmetry axes of the angle-ply, the 1-2 
coordinate system, 

When the applied stress is positive, 

Ef >O

(4.101) 

(4.102) 
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The denominator is the sum of the longitudinal and Poisson's 
strain if the negative sign of Poisson's strain is ignored. 

10. conclusions

The in-plane stiffness of a laminated composite can be obtained directly 
by applying the rule of mixtures equation to the stiffness of the uni­
directional composite. The in-plane compliance is simply the inverse of 
the in-plane stiffness. Finally, if engineering constants are desired, they 
can be obtained from the components of the in-plane compliance. The 
process described above is straight-forward and is applicable to the flex­
ural stiffness of laminated composites as well. The relationship between 
engineering constants of the constituent plies to those of a laminate is 
very complicated. In place of simple linear rule of mixtures equations, 
we have highly non-linear relationships. These non-linear relations are 
responsible for the curves in "carpet plots." 

Matrix inversion is required to obtain the components of compliance 
from those of stiffness. In the process, all the components of the stiff­
ness participate in the determination of each component of compliance. 
It is therefore difficult to visualize the impact of a change in the stiff­
ness to the change in compliance. Simple ratios or linear relationship no 
longer exists. The effect of such change in the stiffness on the resulting 
engineering constants become even less obvious. This is shown in the 
general bidirectional laminates where Poisson's ratios are no longer 
bounded by the limits imposed on isotropic materials. They can be 
greater than one-half or less than zero. This presents a challenge to 
design formulas intended for the conventional material. The tendency 
to make composite materials orthotropic or quasi-isotropic is under­
standable, but the designer may be depriving himself of the opportunity 
of an optimum design. 

It should be emphasized again that laminated composite materials are 
governed by analogous stress-strain relations to those of unidirectional 
composites. The in-plane stiffness of a laminate is bounded by the 
stiffness of the constituent plies. But the compliance and the associated 
engineering constants are not always bounded by those of the constitu­
ent plies. When material constants are not bounded, it is very difficult 
to rely on intuition. This is why discipline is so important when we 
w�rk with composite materials. We must keep track of the signs; we 
must know how the properties of the constituent plies are translated 
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into the stiffness of a laminate. In this respect, the components of 
stiffness are preferred because their variations with the ply properties 
and stacking sequence are governed by simple, explicit, linear relations. 
It is also important to know how many degrees of freedom are available 
as we change ply orientations, or add or subtract plies in order to 
achieve an optimum laminate. 
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10. homework problems

a. Find stiffness compliance, and engineering constants of T300/5208
angle-ply laminates with ±1r/8?

b. Find stiffness, compliance, and engineering constants of hybrid
cross-ply laminates with 0-degree T300/5208 and 90-degree Scotch­
ply 1002 for ply ratios of I, 2, 4 and 8 as in Table 4. 7. Wri!e down
the elastic constants for ply ratios of I /2, I /4 and I /8. Which con­
stants of the hybrid are bounded? Which are unbounded?

c. How do we determine the off-axis properties of cross-ply laminates?
Rotate the entire laminate by angle 'Y as that in Figure 4.12. Show
the coupling coefficients for the laminates in Table 4.7.

d. What is the Young's modulus of an 8-ply 45-degree T300/5208
slender body? What is the Young's modulus of two parallel but
unbonded slender bodies, one with +45 degree, the other -45
degree? What is the Young's modulus of a symmetric laminate con­
taining the same ply angles; i.e.,· [±452 ] s? Explain the difference
between the unbonded and the laminate (bonded).

e. The in-plane modulus of a symmetric laminate follow the rule-of­
mix tures relation using the ply modulus; e.g.,

(4.103) 

Is the following rule-of-mixtures relation using the Young's modulus 
valid? 

(4.104) 

Explain the different results of T300/5208 [0/90] and [±45] lam­
inates derived from the two mixtures equations. 

f Are there bounds on the in-plane Poisson's ratio as fiber stiffness 
approaches infinity or matrix stiffness to zero for cross-ply and 
angle-ply laminates? Are there bounds on shear and normal coupling 
coefficients? 
What devices can use a material with negative Poisson's ratio? g. 

• h. Can a quick estimate be made of the in-plane modulus of laminates
following the homework problem l in Chapter 3? Compare the quick 
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estimate with the exact results in Tables 4. 7 and 4.9 for various 
cross-ply and angle-ply laminates. 

i. We observe in Table 4.7 that the sum of the first two columns (or all
four columns) of modulus is independent of the ply ratio. Why does
the sum for the compliance components change with ply ratios?

j. What quantity of the ayerage stress components remains constant 
when a hydrostatic extension (€f = €g = p

E
) is imposed on a cross­

ply laminate? Does this quantity depend on the ply ratio? 
k. What quantity of the strain components remains constant when a

hydrostatic tension or compression (N 1 = N2 = ±p
0

h) is imposed
on the same cross-ply laminate? Does this quantity depend on the
ply ratio? Docs this quantity change if the entire laminate is ro­
tated? How many invariants in Table 4.7 are equal to those in
Table 4.9?

/. In sizing a conventional material, thickness change is the only 
option. A thickness increase will reduce linearly the stress and strain. 
All components of stress and strain will change proportionally. A 
change in thickness is equivalent to proportional loading or unload­
ing. In sizing composite laminates, proportional increase in stress 
and strain is possible if the ply ratio or ply orientations remain • 
constant. But, in general, the ply orientations change as we seek ·an 
optimum laminate. What principles and constraints are involved in 
achieving an optimum laminate from the standpoint of stiffness only 
(not strength)? We will be concerned with a point within a large 
structure, and it is assumed that the stress resultants are given and 
do not change with ply orientation. 

m. Calculate quasi-isotropic constants using Equation 4.62 for all uni­
directional composites listed in Table 3.6. These constants represent 
the lower bound performance that we can expect from laminates 
made from these composite materials. How do they compare with 
aluminum on the specific stiffness basis (stiffness E divided by 
density or specific weight)? 
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nomenclature 

Ef
h 
h; 
ho
m 
N; 
n 
n; 
{J 
Q(�) I/ 

R;Q, A 

0 

= In-plane stiffness and compliance of multidirectional sym-
metric laminates; in Nm - 1

, and N - 1m, respectively 
= In-plane engineering constants; i = 1,2,6 
= Total thickness of a laminate 
= n;h

0 = Thickness of i-th ply group; i = 1 to m 
= hln = Unit ply thickness, in m 
= Total number of ply groups in a laminate 
= Stress resultant, in Nm-1 

; i = 1,2,6 
= Total number of plies in a laminate 
= h;/h

0 
= Number of plies in the i-th ply group 

= Ply ratio of a bidirectional laminate 
= Stiffness of ply group with 0 ply orientation 
= Radii of generalized Mohr's circle for unidirectional and 

laminated composites; i = 1,2 
= Linear combinations of stiffness; i = I to 5 
= Geometric factors; i = I to 4 
= Volume fraction of ply group with 0 orientation 
= Rigid body rotation of a laminate 
= N;/h = Average stress across thickness of a laminate 
= In-plane strain; i = 1,2,6 
= The angle of a ±¢ angle-ply laminate 
= vf 1, vf 2 Poisson's ratios; vi 1, v� 2 shear coupling coefficients, 

vf 6, v� 6 normal coupling coefficients 
= Ply orientation 

chapter 5 
flexural stiffness of 

symmetric sandwich laminates 

The flexural stiffness of symmetric sandwich laminates with honey­
comb core and multidirectional composite facing will be covered. The 
strain in the laminate is assumed to be proportional to the curvature. 
Flexural stiffness can then be defined in terms· of the modulus and 
compliance and the moment-curvature relation. The contribution of the 
core and the effect of stacking sequence on the flexural modulus can be 
described by explicit formulas. For design optimization the com­
ponents of modulus are therefore easier to use than those of com­
pliance and equivalent engineering constants. 
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1. laminate code

The same laminate code convention as that used for the in-plane 
modulus in Equation 4. l will be followed for the flexural modulus. For 
symmetric laminates we can add the half depth of the core in the code; 
for example: 

(5. l) 

The orientations, ply groups and the core for this laminate are shown in 
Figure 5.1. The plies are arranged in an ascending order from the 
bottom or the z = -h/2 face. This again can be a source of confusion. 
The code in Equation 5. l applies to the lower half of a symmetric 
larpinate starting from the bottom face. The stacking sequence in the 
upper half of the laminate is in reverse order of the code. The actual 
integration for the calculation of the flexural modulus for symmetric 
laminates is applied over the upper half of the laminate which extends 
from z = 0 to z = h/2. 

z 

Figure 5 .1 Dimensions and stacking sequence of 
symmetric sandwich laminates. 

In the case of the in-plane modulus, only the volume fractions of the 
ply groups are important. This is clearly shown in Equation 4.38 and 
Table 4.4. The actual stacking sequence does not affect the in-plane 
modulus. Whether the laminate code is intended to follow an ascending 
or descending order is of no consequence to the in-plane modulus'. This, 
however, is no longer true for the flexural modulus that we will discuss 
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in this chapter. The positions of ply groups in a laminate have direct 
effect on the flexural modulus. That is why we are discussing the 
laminate code again. 

2. moment-curvature relations

In the flexural behavior of laminates, moment and curvature are the 
key variables, similar to the role of stress resultant and in-plane strain in 
the in-plane behavior of the last chapter. The counterpart of the stress­
strain relation for the in-plane behavior is the moment-curvature rela­
tion for the flexural behavior. The elastic constants for the latter rela­
tion will be called the flexural stiffness and flexural compliance. It is 
the purpose of this chapter to develop definitions of moment and 
curvature, and their relationship to each other. 

The distribution of ply stresses can be symmetric and anti-symmetric 
with respect to the midplane. In Chapter 4, the stress distribution was 
symmetric and this was shown in Figure 4.3. In Figure 5.2 we will 
repeat the symmetric distribution of Figure 4.3, and we will also show 
the case of anti-symmetric distribution. 

As the result of symmetric stress distribution in Figure 5. 2(a), we can 
represent the variable stress by an average stress and a stress resultant, 
shown in Equations 4. 7 and 4.15, respectively. The in-plane behavior of 
symmetric laminates can be characterized using the average stress or 
stress resultant. When the stress distribution is anti-symmetric, as shown 
in Figure 5.2(b), the average stress across the entire laminate thickness 
is zero. One approach of dealing with the anti-symmetric stress distribu­
tion is to define a new quantity: the moment, to take the place of the 
stress resultant. The simplest or first moment has three components: 

f h/2 

M2 = a2 zdz 
-h /2

(5.2) 

- I 
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The unit of moment is N, or Nm/m; i.e., a moment per unit width of a 
laminate with thickness h and width b.

z z 

(b) 

Figure 5.2 Stress variations across laminates. Illustration of sym­
metric ply stresses in (a), and anti-symmetric ply stresses in (b). 

The sign of the components of moment is also critical. The bending 
components of moment, like the normal components of stress and 
strain, are easy to rationalize and readily defined. A bending moment is 
positive if the average induced stress in the upper half of the laminate is 
positive. In Figure 5.3(a) we define the positive component for M 1 ; in 
Figure 5.3(b), the positive M2. When M 1 or M2 is negative, the average 
induced stress in the upper half of the laminate will be negative. We use 
average stress here because in a laminated material it is possible to have 
both positive and negative stresses in each half of the laminate. Figure 
5.2(b) shows this possibility. 

( r 
(DA (DA 
---- --.....-

(a) (b) 

1 -o,. 0 

(c) 

Figure 5.3 The positive directions of components of moment. 
Bending moments are shown in (a) and (b). In (c), positive 
twisting moment appears as clockwise torque on the positive 
I-axis face; counterclockwise on the positive 2-axis face. The
effect of the positive twisting moment can be duplicated by
four self-equilibrating forces acting at the corners as shown.
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The sign convention for twisting moment follows the same rule; viz., 
a positive shear stress on the upper half of the laminate is associated 
with the positive twisting moment. The positive shear stress component 
is defined in Figure 1.6. Figure 5.3(c) shows the result of positive 
twisting moment and the induced shear stress distribution. All the 
arrows will reverse their directions if the twisting moment is negative. 
We are not imposing the right-hand rule for the sign convention except 
the coordinates and angle of rotation. If the right-hand rule is followed, 
as shown by Timoshenko, * we must distinguish the twisting moment 
on the I -axis face as M 1 2 , and that on the 2-axis as M 2 1 ; or M x 

Y 
and 

M
yx

, respectively. 

Then we have the following relations: 

(5.3) 

Therefore M12 =-M21 (5.4) 

The important issue here is not what sign convention we use. We must 
understand the rationale and be consistent. Again we would like to 
mention how critical signs are when we work with composite materials. 
Awrong guess is often inconsequential for conventional materials, but 
can be disastrous for composites. The signs for shear stress, shear • 
strain, twisting moment shown here and twisting curvature, which we 
will introduce presently, are all sources of uncertainty and error. 

We will now derive the strain-displacement relation for the bending 
of a plate similar to that for the in-plane stretching of a plate in Equa­
tions 1.1 and 1.4. We will assume that the plate is initially flat as shown 
in Figure 5.4(a). After bending, the plate can be described by a func­
tion w where: 

w = w(x, y) (5.5) 

It is implied that the vertical displacement of each point does not vary 
in the z-direction. The normal to the plate does not stretch or deform. 

*S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, 1959,

p.80
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It only rotates as the plate is bent or twisted. Figure 5.4(b) is an 

illustration of a bent plate. 

z w 

MIDPLANE 
h 

(a) (b) 

Figure 5.4 Definition of a plate or laminate before and after 
bending. The deformed midplane is described by a function 

w(x, y). 

The rotation of the normal to the mid plane can be directly related to 
the first derivative at the same point in the plate. This is shown in 

Figure 5.5 where two cases of the bent plane are shown for the purpose 

of establishing the sign convention. Consistency between Figures 5.3 
and 5.4 is maintained if we use a negative sign in the displacement 
derivative relation as follows: 

aw 
u = -z0 =-z­

ax 

Similarly, we can derive the displacement along the y-axis as: 

aw 
V =-z-

ay 

(5.6) 

(5.7) 

From the last two equations, and the strain-displacement relations of 
Equations 1.1 and 1.4, we can show that: 

au a2 w 
E 1 =-=-z --

ax ax2

av a
2

w
E2 =- =-z--

ay ay2 
(5.8) 
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w 

z 

- r--8 

(a) 

Tension 
at z>o 

X 

w 

z 

(b) 

Compression 
at Z>O 

Figure 5.5 Sign convention of midplane displacements. For a 
concave downward deformation in (a), the derivative of w is 
negative, and a negative sign must be added to the displacement­
denvative relation in Equation 5.6. When the curvature is reversed 
in (b ), the derivative of w is now positive. 

From elementary calculus, we cau relate the second derivatives to 
curvatures k's as follows: 

(5.9) 

Negative signs are used here in order to maintain consistency with the 
definition of moments established in Figure 5.3. The twisting curvature 
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is difficult to illustrate and is not normally covered in elementary text. 
We derived our relation through the use of the strain-displacement rela­
tion in Equation 5.8. Substituting the definitions in Equation 5.9 into 
5.8, we have: 

(5.10) 

This assumed linear strain distribution is shown in Figure 5.6. A more 
general assumed state of strain than both Equations 4.6, and 5.10 
would be the sum of the two. This combined strain will be used as the 
basis of general, unsymmetrical laminates which we will cover in 
Chapter 6 . 

Figure 5.6 Assumed linear strain distribution across 
laminate thickness. Maximum strain values are reached 
at the upper and lower faces. They are equal but opposite 
in signs when the laminate is symmetric. 

We can now derive the moment-curvature relations by substituting 
the assumed strain into the definition of moment in Equation 5.2. We 
must first, however, use the off-axis stress-strain relations listed in Table 
3.1 for this substitution. This will express the stress components in 
terms of the strain components. 

From Equation 5.2 

(5.11) 
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From Table 3. I 

(5.12) 

From Equation 5.10 

(5.13) 

Since curvatures are constant, not dependent on z, they can be factored 
out, 

Similarly 

(5.14) 

where 

D1 I � f Q11Z2 dz, D22 =f Q22z2 dz, 

D12 =f Q12z2dz, D66 =f Q66z2dz, 

D16 =f Q16z2 dz, D26 =f Q2 6z2dz, 

We have thus derived the moment-curvature relation in Equation 5.14 
and defined the flexural modulus in Equation 5.15 . 
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Inverting the moment-curvature relation we can obtain the following 
relation in terms of flexural compliance, duplicating the same steps 
used in the inversion in Chapter 3 .  

k1 =d11M1 + d1 2M2 + d1 6M6 

k2 =d21M1 + d2 2M2 +d26M6 (5.16) 

k6 =d61M1 + d62M2 + d66M6 

The relationship above can be presented in matrix multiplication tables 
as follows: 

table 5.1 
moment-curvature relation of symmetric 
laminates in terms of stiffness 

*2 k6 

M, 4, 42 °'6 

� 02, 42 46 

M6 06, 062 066 

table 5.2 
moment-curvature relation of symmetric lam­
inates in terms of compliance 

M, M2 M6 

I<, d,, d,2 d,6 

*2 d2, �2 d
26 

1<6 d6I d62 d66 

We can now define the effective flexural engineering constants. From 
the compliance relation in Table 5.2 , we know that under simple bend­
ing of M relative to the I-axis only, the resulting curvature along the 
I-axis is: 

(5.17) 
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where b is the finite width of a beam or plate; M is the total moment 
and is equal to M I b. From elementary theory, we know that rigidity of 
a homogeneous beam is: 

Rigidity EI (5.18) 

M 
k1 

(5.19) 

where Eis the homogeneous Young's modulus; and I is the moment of 
inertia. By combining the two relationships, we have: 

or 

where 

EI= b/d1 I 

E = E{ = b/Id1 I = l2/h 3 d1 I 

I = bh 3 /12, /*  = lib = h 3/I2

1/l*d11 

E{ = Effective Young's modulus along the I-axis 

Similarly, we can show: 

E{ = l 2/h3 d2 2 = 1//*d22 

E{ = l2/h 3 d66 = III*d66 

(5.20) 

(5.21) 

(5.22) 

The superscript f denotes effective flexural engineering constants. These 
are the constants if the beam or plate of our multidirectional laminates 
is treated like a homogeneous material. Other dimensionless engineering 
constants analogous to those for off-axis unidirectional composites in 
Chapter 3 and to those for in-plane anisotropic behavior in Chapter4 
are: 

f d2 I 
V2 I =-

-d1 I 

f 
d61 

V6 I = -

d1 1 

f d62 
1)6 2 = d22 

' 

' 

' 

f 
d1 2 

V12 =--d2 2 

Vf - d16 
16 -

--

d66 

v{6 =
d26 

d66 

(5.23) 

(5.24) 

(5.25) 
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3. evaluation of flexural stiffness modulus

We will now evaluate the components of flexural modulus by perform­
ing the integration of the components in Equation 5.15. Similar to the 

case of in-plane modulus in Chapter 4, we will first substitute the 
off-axis stiffness of the unidirectional composites using the multiple­
angle transformation relations listed in Table 3.3. 

From Equation 5.15 

(5.26) 

From Table 3.3 

(5.27) 

Since the U's are independent of z for a laminate with the same uni­
directional composite, 

where 

f h/2 

f
h/2 

h* = z2 dz = 2 z2 dz 
-h /2 zc

=!::. 
12 

= I* [ I - z* 3 ] 
C 

(5.29) 

(5.30) 
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z* 
C Volume fraction of core = 2zc /h 

V1 cos20z2 dz = 2 cos20z2 dz 
f h/2 

i
h/2 

-h/2 , 
Zc 

(5.31) 

(5.32)* 

It is assumed that the honeycomb core has no stiffness in the 1-2 
coordinate system. That is the reason the lower limit of integration is 
set at the half depth of the core. 

Similarly, 

where 

fh/2 
V3 = 2 sin20z2 dz 

ZC 

*A more general definition can be found in Equations 6.79-6.82.

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 
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Here again, the evaluation of the flexural modulus reduces to the evalu­
ation of the four geometric factors, the V's. Similar to Equation 4.31, 
we can combine the definitions of the V's into one expression: 

f h/2 

V
[l ,2,3,41 = 

2 [cos20, cos40, sin20, sin40]z2 dz 
Zc 

(5.40) 

We can also put all the formulas for the components of the flexural 
modulus into a matrix multiplication table as in Table 5.3. Note the 
similarity between this table and the formulas for in-plane modulus in 
Table 4.3. The definitions of the V's, however, are different. Again the 
geometric factors are separated from the material property. For the 
same material, the U's stay constant and the V's change from laminate 
to laminate. For the same laminate but with different material, only 
new U's are needed. 

table 5.3 

formulas for flexural modulus of symmetric 

sandwich laminates 

h* U2 U:, 

011 u, v; l(? 

022 u, - v; l(? 

D12 U4 -Vz

066 U5 - Vz

o,6 
I 

2� V4 

026 
I 

7-V,5 -�

Analogous to the in-plane modulus, the number of flexural modulus 
dependent on the stacking sequence are four, not six. Two linear in­
variants can be derived from Table 5.3: 

D1 I + D2 2 + 2D1 2 = 2[ U1 + U4] h* 

D66 -D, 2 = [Us -U4]h* 
(5.41) 

The core and thickness correction factor which appear here and in the 
first column of Table 5.3 will reduce the invariant terms. 
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Normalized flexural modulus can also be represented by the general­
ized Mohr's circles like those for the unidirectional composite in Figure 
3. 9 and the normalized in-plane modulus in Figure 4.6. In the process
of lamination, the V's either maintain or reduce the length of the radii
of the Mohr's circles, similar to the factors in Equations 4.43 and 4.44
for the in-plane modulus. Honeycomb core will reduce the distance 
between th� Mohr's circles by a magnitude of h*I/*. This core,
how«:ver, will not affect the radii of the Mohr's circles. The use of core 
prov1�es a degree of freedom in addition to and independent of the 
stackmg sequence of the facing material. 

Let us try to evaluate the first term in Equation 5.40. 
• 

f h/2 
V1 = 2 cos20z2 

dz

Zc 

(5.42) 

If each ply group would have the same unidirectional material the 
integration can be replaced by a summation. See Figure 5. 7 fo; the 
definitions of indices of summation. 

m /2 

V, = ¾ L cos20;[z: -z/_ 1] 

i=c+ 1 

i _t_ 

m/2-Zm/2 n/2 

i - z,
16 

/4 

i-1- z,_,
/2 

/0 

C Zc 
8 
6 

4 
2 

0 Zo 0-

Figure 5.7 Schematic diagram of a 
symmetric sandwich laminate. There 
are m ply groups and n plies in the 
l�minate usin� indices i and t, respec­
tively. Assummg the half depth of the
core is equal to a multiple of unit plies,
the half depth can be designated by
i = c = 6 in this figure.

(5.43) 
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Simplification of this summation in terms of volume fractions such as 

that for the in-plane modulus in Equation 4.38 is not possible because

of the cubic relation here instead of the linear relation. Some simplifica­

tion is possible if the half thickness of the core is a multiple of the unit 

ply thickness; i.e., 

zc 
c - - = an integer

ho 

This is assumed in Figure 5. 7. Then the z coordinates in Equation 5.43

can be replaced by ply numbers as follows: 

(5.44) 

where n
i 

equals the number of plies in the i-th ply group. In terms of 
Equation 5.43, this can be rewritten as 

2h 3

0 

3 

m /2 

.L cos20
i
[t; -tJ_ 1]

i=c+ I 

(5.45) 

where (5.46) 

Let 

Substituting Equation 5.45 into Equation 5.46, we obtain 

m /2 

v; = 8 
n3 

L cos20i[t7 - t/_ 1] (5.47) 

i=c+ I 

i 

I 
I 
' 

l 
I 

flexural stiffness of symmetric sandwich laminates 183 

where n equals the total number of plies including the core thickness 
expressed in equivalent number of plies. The variables in the bracket 
can be expressed in terms of plies using Equation 5.44. The formulas 
for the other three V's will take the same form. Only the trigonometric 
function changes; i.e., cosine in Equation 5.47 is replaced by sine, etc. 
This bracketed quantity in Equation 5.4 7 is therefore a weighting 
factor. In the case of the in-plane modulus, the weighting factor was the 
volume fraction of each ply orientation; we had the rule-of-mixtures 
relation. In the case of flexural modulus, this weighting factor put 
heavier emphasis on the outer plies as the result of a cubic relation. 
Again, if we assume that all plies have the same thickness, and the core 
depth is a double multiple of the unit plies, we can establish the 
numerical values of this weighting factor starting with the midplane as 
zero and move upward toward the top surface where the n/2-th ply is 
located. The value of this weighting factor is listed in Table 5.4. Equa­
tion 5.47 can be rewritten as follows: 

n/2 

v* =.!. , 
i 

n3 L 
(5.48) 

t = C + 1

The index t is used here to distinguish from the index i in Equation 
5.47. The latter index is intended for the number of ply groups; and the 
former index, the number of individual plies. The two indices will be 
equal if each ply group has only one ply. 

The weighting factor above can be applied directly to Equation 5.26, 
in which case analogous to Equation 5.48 we have: 

D"'. = _l D .. = _§__
I/ /* 1/ n3 

n/2 

L Q�? 
[t3 -(t-1)3 l

t = C + 1

(5.49) 

Using the numerical values listed in Table 5.4, Equation 5.48 can 
now be written as: 

Vi*=--; [cos20 1 + 7cos202 + 19cos20 3 + 37cos204 + ... ] (5.50)
n 
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table 5.4 

weighting factors for the flexural modulus of 

symmetric sandwich laminates 

Ply order 

number,t t-1 ,3 -(t-1)3 

1 0 1 

2 7 

3 2 19 

4 3 37 

5 4 61 

6 s 91 

7 6 127 

8 7 169 

9 8 217 

10 9 271 

11 10 331 

12 11 397 

13 12 469 

14 13 547 

15 14 631 

16 15 721 

If adjacent plies have the same ply orientation, we have for example, 
ply groups with two plies each, 

Then 

(5.51) 

v;=� [8cos20 1 +56cos203 + 152cos205 + ... } (5.52)
n3 

If we have a honeycomb core with a half-depth of 4-ply thickness, or 

the first ply or ply group for the facing will start with t = 5 in Table 
5.4. 

* 8 
V

1 
=- [6Icos20 1 + 9Icos202 + 127cos203 + 169cos204 + ... ] ·

n3 
(5.53) 

.j 
I 
l 
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where the total number of plies n must include the half-depth of the 
core which is equal to 4 plies. If we have a 3-ply facing, the value of n/2

is 7. 

4. flexural behavior of unidirectional laminates

If our laminate is unidirectional, the ply orientation is fixed, independ­
ent of the z coordinate. The trigonometric functions in Equation 5.40 
can be taken outside of the integrals. The resulting V's are: 

V 11,2,3,41 = [ cos20, cos40, sin20, sin40] h* (5.54) 

where h* is defined in Equation 5.30. For this specialized case, the 
formulas for the flexural modulus are as follows: 

table 5.5 

formulas for the flexural modulus of uni­
directional composites 

h*/J* (h*/i"'JU1 (h*/i"Ju., 

ol u, cos211 cos411 

01� u, -cos211 cos411 

o,; u,, -cos411

06� {!4 -cos411

o,� -fsin211 sin411

OJ. -j sin211 -sin411

Note that the constants in this table are identical to those of the trans­
formed in-plane modulus of unidirectional composites in Table 3.3. The 
only difference is the normalizing factor h* needed for the flexural 
modulus. Thus, we can obtain the normalized off-axis flexural modulus 
directly from the off-axis modulus of a unidirectional composite. This 
is shown in Figure 5.8. All the remarks about the transformed modulus 
of unidirectional composites following Figure 3.5 are equally applicable 
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Figure 5.8 Transformed flexural modulus of unidirectional 
· T300/5208. These are the same curves as those in Figure 3.5

with the exception of the normalizing factor in Table S.S.

to the flexural modulus. The generalized Mohr's circles in Figure 3.9 are 
valid for the flexural modulus of T300/5208 if normalized components 
are used. 

By incorporating a sandwich core into Tables 5.5 we have: 

or D * - D 11* - [1-Zc*3] Q1·1II - II 
-

(5.55) 
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Identical factor shall be applied to the other components of the flexural 
modulus. From this simple relation we can immediately write down the 
flexural compliance by using the same normalizing factor. We have 
now: 

(5.56) 

or 

where the transformed compliance can be found from Table 3.12 and 
Figure 3.11. The latter is repeated in Figure 5. 9 where the normalizing 
factor has beeri added. So long as a sandwich beam or plate consists of 
symmetric, homogeneous facings, its flexural stiffness and compliance 
can be obtained directly from the stiffness and compliance of uni­
dire�tional cotnpQsites. We only need to know the normalizing factor, 
as shown in Equations 5.55 and 5.56. We can make the following 
remarks about the flexural rigidity of beams and plates using the 
expressions in Equations 5.55 and 5.56 

• Rigidity is highly dependent on the thickness h. If we double the
thickness, we will get a cubic increase in return, or 8 times the
rigidity.

• Removal of materials near the midplane is a very effective way of
reducing the weight without much sacrifice in the rigidity. If one­
third of the material at the center is removed; i.e., z; = 1/3, the
loss in rigidity as measured by zt 3 is only 1 /27 of the solid beam
or plate.

Both remarks are valid for composite and conventional materials S() 
long as the facing material is homogeneous. If multidirectional com­
posites are used for the facing, the remarks above are true only qualita­
tively. We will discuss this later in this chapter. 

For an off-axis unidirectional composite facing, the beam will twist 
under pure bending. This is the equivalent of the shear coupling in the 
in-plane behavior of off-axis materials. From Table 5.2, we can relate 
the induced curvatures to bending moments. For example, if we apply 
a bending moment to our off-axis beam as shown in Figure 5.10, from 
Table 5.2: 
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(5.57) 

The first curvature is due to normal bending; the second, the Poisson 
coupling; and the third, the twisting coupling. The question now is how 

will the twist occur: how much, and in what direction. This is the 

recurring question associated with shear stress and shear strain. Again, 

we must pay attention to the sign convention. This was illustrated in 
Figure 3.15 for the in-plane behavior. 

d,�(TPoF' 
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Figure 5.9 Transformed flexural compliance of unidirectional 
T300/5208. This is the same as Figure 3.11 for the off-axis com­
pliance except the normalizing factor h * in Equation 5.56 has 
been added. 

fl 
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• I

Figure 5.10 Pure bending of an off-axis beam. 
Positive ply orientation and positive moment 
are shown.-Heavy arrows show the direction of 
movements of the four corners, similar to 
Figure 5.3(c). 

We know from Figure 5.9 that the shear coupling terms for T300/5208 
and for most practical composites are negative for positive ply angles. 

Since the moment in Figure 5.10 is also positive, we know from Equa­

tion 5.57 that the twisting curvature must be negative. Now refer to 

Figure 5.3(c) where we showed the effect of a positive twisting moment 

on the stress distribution and the possible directions of displacements 

indicated by heavy arrows. Hence a positive curvature will be a clockwise 

rotation about the I-axis. For our beam in Figure 5.10, we have nega­

tive curvature. Therefore, the twisting curvature caused by the bending 

moment will be a counterclockwise rotation along the I -axis. This 

rotation is represented by the heavy arrows shown at the corners. 

5. flexural modulus of cross-ply laminates

Cross-ply laminates are the simplest multidirectional laminates. Repeat­

ing the values of the trigonometric functions in Table 4.5, we have the 

following: 

table 5.6 
values of trigonometric functions for cross-ply laminates 

8; cos281 cos481 sin28; sin481

0 1 1 0 0 

90 -I 1 0 0 

- I 
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Let us study the effect of stacking sequence on the flexural modulus 
of symmetric laminates. We will use a 16-ply laminate with three differ­
ent stacking sequences as shown in Figure 5.1 1. 

TR 
�

9
0 

� 
h/2 

� l - - 90 - - -
0 

-90 - - - _:a 
m=4 m=B m=/6 

(aJ (b) (cJ 

Figure 5.11 Cross-ply laminates with 16 plies but 
different number of ply groups; viz., m = 4, 8 and 16. 
Because of symmetry only upper half of the laminate 
is shown. 

From the second column of Table 5.6, we know that 

cos40 1 = cos402 = 1 (5.58) 

Following the pattern of Equation 5.50 for v;, we can immediately 
write down the �nalogous relation for vr

8 512 
VJ= 

n3 
(1 + 7 + 19 + 37 + 61 + 91 + 127 + 169) =

512 
= I 

(5.59) 

where n = 16 was used. Because of the special angles in Equation 5.58, 
this V* will remain constant, independent of the stacking sequences 
shown in Figure 5. 11. 

Knowing the values from the first column of Table 5.6, we can 
substitute the values into Equation 5.50 for the case of m = 4 or Figure 
5. I I (a).

v* = � (-1 - 7 -19- 3 7 + 6 1 + 91 + 1 21 + 169) = 3 94 = l
I 

] 63 5} 2 4 
(5.60) 

_, 
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Note that the first ply from the midplane upward is a 90-degree ply. We 
have mentioned before that there is a difference between the laminate 
code as defined by Equation 5.1 which follows an ascending order from 
the bottom surface of the laminate. The stacking sequence starting 
from the rnidplane is the opposite of the laminate code for all sym­
metric laminates, as shown in Figure 5.11. 

The case of m = 8 shown in Figure 5.11 (b ), and that of m = 16 in 
Figure 5.11 (c) are listed below, respectively 

Form= 8, 

v; = � c-1 - 7 + t 9 + 31 - 61 - 91 + 121 + t 69) = 192 = l
163 512 8 

(5.61) 

Form= 16, 
8 96 3 v* = - c-1 + 7 - 19 + 37 - 61 + 91 - 121 + 169) =-=-1 163 512 16 

(5.62) 

It appears that a pattern has been established for cross-ply symmetric 
laminates with increased ply groups 

V:' = -1, m = 4, 8, 16, . . .
m 

(5.63) 

Summarizing the results for this family of cross-ply laminates in 
which the total number of ply groups is a variable, we can enter the 
values of V's into Table 5.3 and arrive at Table 5.7. Care must be 
exercised in the proper use of normalizing factors. Note that only Vi is 
affected by the stacking sequence. We only showed the case of changing 
the number of ply groups. Other stacking sequences than those shown 
in Figure 5.11 are, of course, possible; an example of which may be 
[ 02 /904 /02] s· The value for V1 will be different from that shown in 
Equation 5.60 and Table 5. 7. The effect of V1 on the flexural modulus 
is the degree of anisotropy, or the difference between D 1 1 and D2 2• In 
the limit when we have an infinite number of alternating plies, our lam­
inate will become quasi-homogeneous. The property of the laminate 
will be square symmetric, but not isotropic. This difference between 

-- I 
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table 5.7 

formulas for flexural modulus of a solid 
symmetric [0/90] cross-ply laminate 

I U2 u, 

011* u, .L I 

02l u, 
_..J_ I 

o,/' u .. -/ 

06/< Us -/ 

square symmetric and isotropy was illustrated in Equations 1.22 and
1.23.

Let us calculate the flexural modulus of cross-ply laminates shown in
Figure 5.11. Using the data for T300/5208, we have for 16-ply
laminates

h = 16h
0 

= 16 X I 25 X 10-6 == 2 X 10-3 m

= 666 X 10-12 [16.37 + ! 85.73 + 19.71]

For ply group m equal to 4

Dt1 = 160.3 GPa.

D1 1 = 106.9 Nm

(5.64)

(5.65)

(5.66)

flexural stiffness of symmetric sandwich laminates 193 

or form = 8

n:1 = 128.2 GPa
(5.67)

or form = 16

n:1 = 112.1 GPa
(5.68)

D 11 = 74.7 Nm

or for m = 
00 in Table 5. 7, the laminate becomes quasi-homogeneous.*

D1
*
1 = D2*2 = 96.0 GPa

(5.69)
D11 = D22 = 64.0 Nm

We can repeat the process above and obtain all the components of
modulus with or without normalization, and the corresponding com­
ponents of compliance. We purposely list both the normalized and
unnormalized components because they serve different purposes.

• m = 4, [04 /904 ls, Figure 5.1 l(a) (5.70)

160.37 2.89 6.24 -.569

D;j = 2.89 31.77 GPa *d;; = -.569 31.51 (TPaJ1 

7.17 139.4

106.9 1.93 9.36 -.85

D;; = 1.93 21.18 Nm d11 = -.85 47.27 (kNm)"1 

4.78 209.2

(5. 71)

*This occurs when normalized flexural modulus is equal to the in-plane modulus in Table 4.11 .
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• m = 8, [02 /902 
/02 /902 ] s, Figure 5.1 l(b) (5.72) 

128.22 2.89 7.80 -.353 

D-*= 2.89 63.92 GPa *
-.353 15.65 (TPaj1 

1/ d;; =

7.17 139.4 

85.48 1.93 11.70 -.530 

D;; = 1.93 42.61 Nm d;; = -.530 23.48 {kNmf1 

4.78 209.2 

(5. 73) 

• m = oo or [0/90 .. .]
s 

(This is a quasi-homogeneous laminate.) 

96.08 2.89 10.41 -.313 

*

D;; = 2.89 96.08 GPa 
*

d;; = -.313 10.41 (TPaf1 

7.17 139.4 

64.05 1.93 15.62 -.471 

D;; = 1.93 64.05 Nm d;; = -.471 15.62 (kNmf1 

4.78 209.2 

(5. 74) 

Based on the components above, we can say: 

L The shear components are uncoupled from the other four non­
zero components. The shear compliance is simply the reciprocal of 
the shear modulus; i.e., 

7.17 X 0.1394 = 4.78 X .2092 = 1.000 

The shear component is independent of the ply groups. 
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2. The Poisson component of modulus remain constant as the ply­
groups change. But the Poisson component of compliance changes
with m.

3. Because of the constant Poisson component and the invariant con­
straint of Equation 5.41, the sum of the two normal components 
of the modulus with or without normalization must be constant; 
i.e.,

160.37 + 31.77 = 128.22 + 63.92 = 2 X 96.08 = 192.16

106.9 + 21.18 = 85.48 + 42.61 = 2 X 64.05 = 128.1 

4. When the normalized components in Equation 5. 74 are equal to 
those in Table 4 .  7, the laminate is quasi-homogeneous. 

5. Figure 5.1 2 shows the degree of convergence of a cross-ply lam­
inate to a quasi-homogeneous square-symmetric laminate . 

011, 022, In Nm 

100 

� 80 
64.0@m=CO 

60 

� 
40 

20 

m 
0 8 /6 24 32 40 

Figure 5.12 Flexural modulus components as func­
tions of ply groups for a T300/5208 laminate. Note 
that as ply groups m increases, the modulus compo­
nents approach  the modulus of the quasi-homogeneous 
laminate, although many groups are needed for good 
convergence. 

If we introduce a honeycomb core into our cross-ply laminate, we 
want to show how the flexural modulus can be calculated. Let us 
examine three cross-ply laminates in Figure 5. 13. These laminates are 
sandwich constructions with facing materials identical to those solid 
laminates shown in Figure 5.11. The number of ply groups are different 
among these laminates. The core half-depth is equal to four plies. 
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T i--------------

0 

h/2 90 

m = 4 

(a) 

0 

90 

0 

90 

m=B 

(b) 

m =/6 

(c) 

Figure 5.13 Cross-ply sandwich laminates. This sym­
metric laminate has 2-8 ply facings and 4-ply thick 
half-depth of core. Total thickness of laminate is 24 
equivalent plies. Three different numbers of ply groups 
are shown; m = 4, 8 and 16. This figure shows the 
same facing laminates as those solid laminates in 
Figure 5. 11. 

The flexural modulus of these sandwich laminates can be readily 
calculated by substituting the nonzero trigonometric functions into 
Equation 5.53. For the case of 4-ply group laminate in Figure 5. I 3(a), 
or m = 4. 

� (-61-91-127-169 + 217 + 271 + 331 + 397) =±
243 9 

(5.75) 

or form = 8 

� (-6 I -91 + I 2 7 + 169 -21 7 -271 + 3 3 I + 3 9 7) = l
243 9 

(5.76) 

or form = 16 

_!...(-61 +91-127+169-217+271-331 +397)=.!. 
243 9 

(5.77) 

l 
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We again notice the trend that, as the number of ply groups m increases, 
the value of V* decreases by the following relation: 

V:'=�
9m 

(5.78) 

The sandwich laminates approach square-symmetric as m increases. 
We need the following values before we can use the formulas for the 

flexural modulus in Table 5.3: 

VJ =-8- ( 61 + 91 + 127 + 169 + 217 + 271 +331 + 393)= 1664
243 1728 

26 
27 

261-z*3 =-c 27 

V3 = V4 = 0 

(5. 79) 

(5.80) 

(5.81) 

(The laminate is orthotropic.) 

Using the same correction factor for the sandwich core is applied to the 
first column of Table 5.3, and the normalized V's defined in Equation 
5.46, we can summarize. the results in Equations 5.79 to 5.81 in a 
matrix multiplication table as follows: 

table 5.8 
formulas for flexural modulus of a symmetric 
sandwich laminate with (0/90] facings 

26 
U2 

26 
27 � 

D11* u, ...!§... I 
9m 

D,l u, - ..1§.. I 
9m 

D,f II,, -! 

o6t U4 -/ 

- - .tt - :I!: it ,it •it -
O,r 026- 0, 01; - 01/

// , h '/ I - 26/27

--- ------
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We are now ready to calculate the flexural modulus of our sandwich 
laminates assuming the facing material is T300/5208. 

h = 24h = 24 X 125 X 10-6 = 3 X 10-3 m
0 (5.82) 

(5.83) 

From Tables 5.3 and 5.8 form = 4 shown in Figure 5. l 3(a): 

h3 
= 

12 
[ 26U 1 /27 + 16U2 /9m + 26U3 /27] (5.84) 

= 2.25 X 10-9 (26 X 76.37/27 + 16 X 85.73/9m + 26 X 19.71/27] 

(5.85) 

Fo,r m = 4, 

D°t1 = 130.62 GPa D 1 1 = 293.9 Nm (5.86) 

form = 8, 

D°t 1 = 111.95 D, 1 = 251.9 (5.87) 

form = 16, 

D! 1 = 102.04 D11 = 229.6 (5.88) 

form = 00, 

D* -
1 1 - 92.52 D11 = 208.1 (5.89) 

Similarly, 

(5.90) 

Form = 4, 

n;2 = 54.4 GPa D22 = 122.4 Nm (5.91) 

form = 8, 

D22 = 165.3 (5.92) 
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form = 16, 

D22 = 186.8 (5.93) 

form = 00, 

D22 = 208.1 (5.94) 

This last value is the modulus for a quasi-homogeneous laminate. This is 
the same value as in Equation 5.89. The normalized flexural modulus is 
equal to the in-plane modulus in Table 4. 7 times the core correction 
factor of 26/27. The absolute flexural modulus is plotted in Figure 5.14. 

Di,, 022, in Nm 
300 

------208@ m=a; 
200 

100..-�_..__.._.,__...,_.....__.__._��-m 
/6 24 32 40 

Figure 5.14 Flexural modulus for a sandwich laminate of 
T300/5208 as functions of the number of ply groups. 
The convergence toward a square-symmetric laminate is 
analogous to that in Figure 5.12. 

• Note the substantial increase in the modulus components of the
sandwich construction here over the solid laminates shown in Figure 
5.1 2. First of all, there is a thickness increase from 16 to 24 plies. If our 
laminate were homogeneous and solid or without a core, the increase in 
the flexural modulus components will be the cube of the thickness 
ratio. In our particular case, it will be: 

(24/16)3 = 3.375 (5.95) 

. I 
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On the other hand, if we have a sandwich construction, there should be 
a reduction proportional to, as in Equation 5.55, 

1 - z* 3 = 
26 

= .962 
C 27 

(5.96) 

which represents the effect of core if the facings were homogeneous. 
Assuming the core thickness for our laminate is the same as those in 
Figure 5.13, the net effect of thickness increases and the presence of 
core is simply the product of Equations 5.95 and 5.96: 

3.375 X 
26 

= 3.25 
27 

(5.97) 

We can now make direct comparison between the sandwich construc­
tion and the solid laminate. This comparison can only be made for the 
case of quasi-homogeneous material. For example, the ratio of the 
absolute components of modulus between that in Equation 5.94 and 
the same component in Equation 5.74 is 

208.1 /64.05 = 3.25 

This agrees with the result of Equation 5.97. Similarly, we can find the 
ratio of the normalized components between Equations 5.94 and 5. 74: 

92.52/96.08 = .962 

This agrees with the result of Equation 5.96. The conclusion is that 
homogeneous materials with or without honeycomb core can be scaled. 
Plate thickness and core thickness can be obtained by proper ratios 
from one construction to another. No such simple scaling will work for 
laminated composites. They must be assessed on an individual basis. 
Only in special cases can the calculation of flexural modulus by smear­
ing the laminated facing be approximately accurate. The parallel axis 
theorem in the next chapter can determine this accuracy. 

6. flexural modulus of angle-ply laminates

In the last section we saw that cross-ply laminates are orthotropic, or 
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square symmetric when the number of ply groups approach infinity. We 

will see in this section that angle-ply laminates with or without core are 
generally anisotropic. A balanced, symmetric laminate is orthotropic in 
its in-plane modulus but is anisotropic in its flexural modulus. The 
reason is that the position of each ply is unique along the z-axis. The 
shear coupling terms of a +0 ply cannot be cancelled by those of a -0 
ply unless the positions of these plies are judiciously selected. We will 

show later that the shear coupling terms can be cancelled if we use 
antisymmetric laminates. So there are two simple methods of obtaining 
orthotropic flexuraLm odulus: 

• Use on-axis plies only. This is the case of on-axis unidirectional or
cross-ply laminates.

• Use antisymmetric laminates. This will be discussed in Chapter 6.

The motivation to make laminates orthotropic (and symmetric) is 
often driven by the availability of stress analysis tools. Most current 
tools are limited to orthotropic and homogeneous plates. It is un­

fortunate that the use of composite materials is limited or penalized by 

the nonavailability of analytical tools. It is important to understand 
how anisotropy and nonhomogeneity arise in composite laminates and 
to what degree they can be manipulated to perform functions not 
possible with conventional materials. 

For angle-ply laminates the ply orientation can be 

(5.98) 

Figure 5.15 shows three possible ply groups, m = 4,- 8, and 16 of 
angle-ply laminates. 

m=4 

(a) 

m=B 

(b) 

m=/6 

(c) 

Figure 5.15 Angle-ply laminates with different number 
of ply groups. Because of symmetry only the upper half 
of the laminate is shown. 
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When ply orientations change signs, the cosine functions remain the 
same, while the sine functions will change signs. The cosine function in 
Equation 5.48 can be factored out as follows: 

Since n = 16, or t = 8, from Table 5.4 

� cos2¢ (1 + 7 + 19 + 37 + 61 + 91 + 127 + 169) 
163 

= cos2¢ 

Similarly, we can show 

v; = cos4¢ 

Form = 4 and the proper sign for the sine functions we have: 

V; = � (-1 - 7 - 1 9 - 3 7 + 61 + 91 + 1 2 7 + 16 9 )sin 2¢ 
163 

= 2sin2¢
4 

Similarly, we can show 

Form = 8, 

v: = l sin4¢
4 

V; = � (- I - 7 + l 9 + 3 7 - 61 - 91 + 1 2 7 + 16 9)sin 2¢ 
163 

lsin2¢ 
8 

(5.99) 

(5.100) 

(5.101)_ 

(5.102) 

(5.103) 

(5.104) 
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Form = 16, 

v; = � (-1 + 7 - 19 + 37 - 61 + 91 - 127 + 169)sin2¢ 
163 

= 2 sin 2¢
16 

It appears that 

* _ 3sin2cp _ V
3 

----,m-4,8, 16, . . .
m 

Similarly, 

* _ 3sin4¢ _ 6 V4 ---�, m - 4, 8, 1 , ... 

(5. 105) 

(5.106) 

(5.107) 

The formulas for the flexural modulus for angle-ply laminates can now 
be written in matrix multiplication form in Table 5.9. 

table 5.9 

formulas for flexural modulus of a solid 
symmetric angle-ply [(/>/-</>] laminate 

I U2 U3 

ot u, cos2¢ cos4¢ 

ot u, -cos2¢ cos4¢ 

4� U4 -cos4¢

06� U5 - cos4¢

o,: /
,,,

sin2¢ ;, sin4¢

ot J
,,,

sin2¢ - ;, sin4¢

- I 
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Note the formulas for the flexural modulus of angle-ply laminates are 
identical to those for in-plane modulus of angle-ply laminates as shown 
in Table 4. 7 with the exception of the shear coupling terms. These 
terms vanish as the number of ply groups increase. Thus for quasi­
homogeneous laminates (as m becomes infinity), the in-plane and 
flexural moduli are related by: 

or 

conversely, 

D,'4<_ = .!l D,, = lA .. 
1/ h3 I/ h I/ 

12 
d-· = -a ..

1/ h2 I/ 

(5.108) 

(5.109) 

(5.1 10) 

We can thus compute the flexural modulus and compliance of a 
specific angle-ply laminate. 

Let 

</> = 45 degrees (5.111) 

Our laminates form = 4, 8, 16 are: 

(5.112) 

The upper half of these laminates are shown in Figure 5.16. Using these 
data for T300/5208 and 16 plies, we have 

h 

D h 3 
3 U -- _

1
U2 X 10-9 D16 = 26 = --- 2 

12 2m m 

(5.113) 

I 
I 
I 
I 

I 
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m=-4 

(a) 
m=- 8 
(b) 

m=/6 
(c) 

Figure 5.16 Stacking sequence of symmetric angle-ply 
laminates with 45-degree angles. Ply groups increase 
from 4 to 16. On!}' the upper half of the laminate is 
shown. 

The flexural modulus and compliance for various ply groups are shown 
as follows: 

56.65 42.31 ..!_ 128.5 37.77 28.21 ..!_ 85.73 
m m 

D;j= 42.31 56.65 ..!.12s.5 GPa D;; = 28.21 37.77 ..!..85.73 Nm 
m m 

1 
- 128.5 _!_ 128.5 46.59 _!_ 85.73 ..!_ 85.73 31.06
m m m m 

(5.114) 

Note as m increases, the flexural modulus becomes square symmetric . 
We can invert the modulus for m = 4 and obtain the following com­
pliance, where both the normalized and the unnormalized are included: 

[ "·" 

-25.70 

d;j = -25.70 44.02 

-12.63 -12.63 

Form = 8, 

[ '"" 
-29.17 

d;j = . -29.17 40.55 

-3.92 -3.92 

-IW] 

-12.63 (TPaT1 

38.9 

-392] 

-3.92 (TPai' 

24.16 

[ "" 
-38.56 

d;;= -38.56 66.03 

-18.95 -18.95 

[ '"" 
--43.76 

d;; = --43. 76 60.83 

-5.88 -5.88 

_,..,,] -18.95 (kNmT1 

58.35 

(5.115) 

�88] -5.88 (kNmT1 

36.25 

(5.116) 
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Form = 00, 

d-- = _!2 a.. (5.117) 1/ h2 I/
where a--h for our angle-ply laminate can be found in Table 4.9: l/ 

d11 = !1.al 1h = 

12 39.9 X 10-12
= 59.85 (kNmr1 h 3 8 X 10-9 (5.118) 

The other components of compliance can be calculated in the same manner. We have 

[ 39.9 

-29.8 

[ "·" 

-44.70 

,,J d;i = -29.8 39.9 ] ITT•T' d;j = -44.70 59.85 (kNmT' 

21.46 

(5.119) 
As the number of ply groups increase, the shear or normal coupling terms drop rapidly in both the modulus and compliance. The rate of reduction is greater in the compliance than in the modulus. Only when m = 4 is the shear coupling significant. The compliance components 11, 22 12 and 66 do not vary much as the shear coupling components 

' change. This means that the flexural stiffness of the laminate increases as it approaches orthotropy. 
7. ply stress and ply strain analysis

The ply stress and ply strain in a symmetric laminate due to flexure can be determined following the procedure for the in-plane stretching. Figure 5.17 is analogous to Figure 4.4 for the in-plane behavior. The process of determining the ply stress and ply strain is straight forward. The motivation is to assess the strength of each ply within the laminate. The strength calculation will be covered in Chapter 7. The highest z for the i-th ply group in Figure 5.7 will have the highest strain in each ply group by virtue of Equation 5.10. It is the highest strain components that will govern the strength of that .
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ply group. This is obvious if all components of the curvature have the same sign, positive or negative. But it is not so obvious if the signs are ·· mixed. We will show later that regardless of the signs of the curvaturecomponents, the highest z will govern their strength. This holds forsymmetric laminates under flexural loads.
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Figure 5.17 Ply stress and strain in a symmetric laminate under flexure: 
From (a) to (b): Use moment-curvature relations in Table 5.2. 

(45) 

From (b) to (c): Use curvature-strain equation in Equation 5. l 0. Use top surface 
of each ply group for the z-value. 

From (c) to (d): Use strain transformation to transform the laminate strain to 
the on-axis strain. 

From (d) to (e): Use the on-axis stress-strain relation to determine the corre­
sponding on-axis ply stress. 

Figure 5.17 outlines the process of going from applied moments to the resulting ply strain and ply stress in a laminate. The initial moments may be obtained a number of ways. Let us assume that the moments are known. The simplest example is the case of a statically determinate structure. One such example is the three-point bend test shown in Figure 5.18, when the load is applied at the midspan. The maximum moment is also at the midspan 
M= PL 4 (5.120) 



• 

• 

208 introduction to composite materials 

For a beam with a width b, the distributed moments or moments per 
unit width are 

From the moment-curvature relation in Equation 5.17, 

PL 
k 1 

= d 1 1 M 1 = 4b d 1 1

k2 = d2 1 M1 

k6 = d6 1 M 1 

p 

�l
:J �L 

Figure 5.18 Three-point 
bend test. 

Let us assume that the laminate is T300/5208, [04904] s: 

P = IOON 

L = .l m 

b = .01 m

From the compliance of this laminate listed in Equation 5.71, 

d1 1 = 9.36 (kNmr1 

d2 1 = -.85 (kNmr1 

(5.121) 

(5.122) 
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With the geometric and material properties above, we can immediately 
calculate the following using Equation 5.122: 

JOO X .I 9.36 = 2.34 m-1
4 X .01 

100 X .I (-.85) = -.212 m-1
4 X .01 

The strain at the upper face of the beam (top of 0 ° ply group) 

z = 8h
0 

= l X 10-3m

€1 = zk 1
= 2.34 X 10-3

€2 = zk2 = -.212 X 10-3 

€6 0 

(5.123) 

(5.124) 

The induced stress components at this upper face which have the 
0-degree ply group are:

a(O) = 181.8 X 2.34-2.89 X .212 
X 

= 424 MPa 

a2 = atO) = 2.89 X 2.34 - 10.3 X .212 

= 4.57 MPa 

a(O) = 0s 

(5.125) 

The transverse stress and strain components are negligible compared 
with the longitudinal components. 
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The strain and stress at the upper face of the 90-degree ply group is 

z = 4h
0 

= .5 X 10-3 m

€1 = 1.17 X 10-3 

(5.126) 

€2 -.106 X 10-3 

€6 = 0

01 = 0(90) = 10.3 X 1.17 - 2.89 X .106

= 11.7 MPa 

02 = 0(9 O) 2.89 X 1.17-181.8 X .106 (5.127) 

= -15.88 MPa 

06 
= 0(90) = 0 

The stress distribution is shown in Figure 5.19. 

z z 

424 

Imm / 
4.57 

/ 
/ 

-11.7
/ 

I I I I 

0 200 400 MPo -10 /0 MPo 

Figure 5.19 Ply stress in a cross-ply beam at the midspan of a three-point 
bend test. 

> 

I 
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The deflection lj in Figure 5.18 can be calculated from the beam 
formulas in handbooks 

8 = 
PL 3 

48£/ 

PL 3 
=-d

48b 
11 

= 100 X .13 

936
48 X .01 

(5.128) 

The ply stress and ply strain analysis of any determinate structure 
can be duplicated exactly as the above. New variables are introduced as 
follows: 

• For different laminates, different compliance must be used.
• For different end conditions, such as a four-point bend test, the

moment in Equation 5.120 and the deflection in Equation 5 .128
must be changed.

For laminate under complex boundary conditions, the process above 
remains the same for the ply stress and ply strain determination. But 
the deflection function w in Equation 5.5 requires a solution based on 
the theory of plates. No simple relation like those for beams is 
available. 

Finally the ply stress and ply strain calculation is only the means for 
strength determination. Again the appropriate failure criterion which 
we will cover in Chapter 7 is required for the ply-by-ply examination to 
ascertain the sequence of successive ply failures, from the first (FPF) to 
the last or the ultimate. 

8. conclusions

The flexural stiffness of laminated composites can be derived following 
the pattern for the in-plane stiffness. First the flexural modulus can be 
related to the modulus of the constituent plies by some weighting 
factors. The composite modulus of the laminate is not simply a linear 
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function of the constituent plies. That was the case for the in-plane 
modulus, but for the flexural modulus the outer plies will contribute 
more than the inner ones. Flexural compliance and the equivalent 
engineering constants can be derived by matrix inversion, and the ratios 
or reciprocals of the compliance components, respectively. 

Light weight core can be used to replace the laminate material near 
the mid-plane. This is a very effective method of reducing the total 
weight of the laminated plate while sacrificing very little in the flexural 
stiffness. As the number of ply groups increases, the behavior of the 
laminated plate approaches that of a quasi-homogeneous laminate. It is 
very difficult performing scaling operation from one laminate config­
urations to another. In most instances, such scaling operation can only 
be done if the laminates are quasi-homogeneous, with or without core. 
To be safe, flexural modulus should be calculated based on the precise 
stacking sequence. 

A balanced laminate will have zero shear and normal coupling in its 
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9. homework problems

a. What happens to the flexural modulus and compliance if the defini­
tion of displacement in Equations 5.6 and 5. 7 does not have a minus 
sign? 

b. What happens to the flexural modulus and compliance if tensorial
shear strain is used instead of the engineering shear strain? The factor 
2 in Equation 5.8 must be removed. 

c. How accurate is the following rule-of-mixtures equation for esti­
mating the flexural stiffness of a beam? 

n/2 

L £U) [t3 -(t-1)3] (5.129) 
t = c + I

in-plane behavior. Since each ply occupies a fixed position along the where the terms are identical to those in Equation 5.48, except £U) 
z-axis, a laminated composite is usually anisotropic in its flexural is the Young's modulus of the t-th ply. Compare the flexural stiffness 
behavior. of solid cross-ply and angle-ply beams for various ply groups up to 

The flexural stiffness of a laminated beam should be derived as a infinity calculated from Equation 5.129 and those in Figure 5.12 and 
special case of a laminated plate. The appropriate modulus of the indi- Equation 5.114 et al. 
;victual constituent ply must be included in the computation of the total d. We know from Ch"apter 4, Section 6, that quasi-isotropic laminates
flexural modulus of the laminated plate. From this modulus, we can can be obtained from discrete multidirectional laminates (1r/3, 1r/4 et 

___ then __ compute_ the_flexural_ compliance;_from_Jhe_compliance_we __ can _ ____ __ _______ aJ .. ) . .  Yle_ also .. know--thaLquasi.,._homogeneous-Iaminates-can-be-ob----
compu te the stiffness of a beam. This process was followed in Equation tained from large ply groups or m approaching infinity. But it is 
5.21. It is not possible, on the other hand, to compute directly the possible to approach quasi-homogeneity with finite number of plies . 
effective Young's modulus of a beam from the Young's modulus of One stacking sequence discovered by Ernest R. Scheyhing (D.Eng 
each constituent layer. A rule of mixtures equation, including the thesis, Yale University, 1965) calls for the following 24-ply sym-
proper weighting factors, will not result in the proper stiffness of the metric laminate: 
beam. Composite laminates are two-dimensional bodies and only two­
dimensional theories are valid for the description of the stiffness 
behavior. 

[ -60/0/602 /0/-60/60/0/-602 /0/60] s (5.130) 

Show, for a T300/5208 laminate, how close homogeneity is satisfied, 
i.e.,

12 
A-- =-D--

11 h2 I/ (5.131) 
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How close is flexural isotropy satisfied, i.e., 

(5.132) 

Is in-plane isotropy exact or appruximate? Plot the transformed 
modulus from 0 to 90 degrees. 

e. Label the coordinates in Figure 5.20 which shows the flexural
modulus, and bending and torsional stiffnesses of 16-ply 45-degree
angle-ply laminates of T300/5208. The bending and torsional stiff­
nesses are:

EI 

b 

GJ 

b 

(5. 133) 
4 

The torsional stiffness is based on a wide rectangular cross-section. 
Also show the asymptotic value when m approaches infinity. 

f. Find the load-deflection curve of a three-point bend test (centrally
located load) of the following beam:

T300/5208 

h = 8 mm 

L = 10 cm 

b = 2 cm 

(5.134) 

g. Determine the first ply failure (FPF) and the ultimate using the
following maximum strain criteria:

E
x 

= 8.3 X 10-3 

e
y 

= 3.8 X 10-3 

(5.135) 

I 
j 
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Figure S.20 Flexural modulus and stiffness of 16-ply 45-degree 
angle-ply laminates of T300/5208. The abscissa is the number of 
ply groups. (See Figure 5.15) 

h. Repeat the problem above for [90 1 6 /0 1 6] s laminate.

i. What is the natural frequency (the first mode) of the beams in Prob­
lems g and h? Use the density from Table 1. 7 1600 kgm-3

; and the
mass per unit length µ, = 0.256 kg/m. How close do these frequencies com­
pare with a hinged-hinged beam where

(5.136) 

where :;\1 = 3.142 (from Handbooks) 

j. The use of hybrid composites is an effective means of optimizing
laminates. Hybrid leaf springs with all 0-degree T300/5208 and
Scotch-ply 1002 can be made with different ply ratios. Assuming
cost ratios of the two materials to be 10, 5 and 2 (T300/5208 is
higher), is there a cost-effective ply ratio from the bending stiffness
viewpoint? For simplicity, assume a total of I 00 plies is needed. All
Scotch-ply is located in the core, and all T300/5208 in the facing
material.
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nomenclature 

d;j 
Ef 

h* 
h; 
ho 
I 
k; 
M; 
m 
n 

n; 
Q(fJ) I} 

I; 
U; 
V; 

V-* I 

Zc 

zc* 

Z; 

vf. 
I] 

= Width of beam, in m 
= Flexural stiffness modulus of multidirectional symmetric 

laminate including core, in Nm; i,j = 1,2,6 
= D

1/I,*or 12D;/h3 when Zc = 0, in Pa 
= Flexural compliance of multidirectional symmetric laminate 

and the inverse of D,-i
, in (kNm)-1 ; i,j = I ,2,6

I*d . p -I ;1, m a
Flexural engineering constant, in Pa; i = 1,2,6 
Total thickness of laminate, including core, in m 
h3 [ I - z; 3 ] /12, in m3 

= 
n;h

0 
= Total thickness of the i-th ply group; i = l tom 

Unit ply thickness, in m 
= Moment of inertia, in m4 

= Curvature, in m-1 
; i = 1,2,6 

Moment, in N; i = 1,2,6 
= Total number of ply groups in a laminate 

Total number of plies in a laminate including core depth · 
measured in number of plies 

= Total number of plies in the i-th ply assembly; i = 1 tom 
= Modulus of the ply assembly with 0 orientation; i,j = 1,2,6 
= z;/h

0 
or = i 

Linear combinations of modulus; i = l to 7 
= Geometric factors in formulas for flexural modulus; i = 1 to 

4 

= · l2V;/h 3

= Half depth of honeycomb core, in m 
= 2z

c
/h = Total core to total laminate thickness ratio 

= Location of ply or ply group, in m 
= Flexural coupling coefficients 

I 

I 
I 

I 

chapter 6 
properties of general laminates 

General laminates are free from midplane symmetry. They can be 
asymmetric or antisymmetric; and can be of built-up and hybrid con­
struction. A new coupling between stretching and flexure is introduced. 
The modulus and compliance matrices increase from 3 X 3 to 6 X 6. 
But the same methodology that governs the symmetric laminates is 
extended to the general laminates. Unique opportunities not available 
with conventional materials can now be exploited to produce novel 
performances. The parallel axis theorem is a powerful tool for deter-

- mining the modules of general laminates.

i � __ :;;;;; -
. . . . . .

. ·.·.•.•,•, 

. · · · · · · · · · · ·  

·::::::::::::::::.:::::::::i::::y1::::::: 
·,•,·.·.·.·.·.•.•,·.·.·,•.·.·.·.·.•.,·.·.· 
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1. index and matrix notations

We have used subscripts for the components of stress, strain, modulus 
and compliance since the first chapter. We have also used the matrix 
multiplication tables to represent stress-strain relations, transformation 
relations, and others. Having had experience with the longhand nota­
tion, we will now introduce a shorthand notation that can efficiently 
represent the equations that we have seen earlier. 

For example, in place of the stress-strain relation in Table 3. I we can 
write the same relation in a summation as 

a- =

I 

i=l,2,6 

(6.1) 

There are two types of subscripts in this equation. First, the subscript i -
is called the free index. It assumes values of 1, 2, 6 in this equation. The 
rule that governs this subscript or index is called the range convention 
defined as follows: 

A FREE INDEX CAN APPEAR ONLY ONCE IN EACH TERM OF AN 

EQUATION AND ASSUMES A RANGE OF VALUES SPECIFIED. 

Secondly, subscript j appears twice on the right-hand side of this equa­
tion (the subscript j under the summation sign is not part of the main 
relation), we now introduce the summation convention of the· index 
notation: 

REPEATED SUBSCRIPTS OR INDICES CAN APPEAR ONLY IN 

PAIRS IN EACH TERM OF AN EQUATION AND A SUMMATION 

OVER THE RANGE OF THE INDEX IS IMPLIED. THE SUMMA­

TION SIGN CAN THEREFORE BE ELIMINATED. 

With these two conventions, Equation 6.1 becomes: 

(6.2) 

Note the range for both indices covers 1, 2 and 6. We can recover the 
first row of Table 3.1 from Equation 6.2 when i = l ,j = 1,2,6; i.e., 

(6.3) 
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Similarly, when i = 2, j = 1,2,6, we recover the second row; when i = 6, 
j = 1,2,6, we recover the third row. If we let i = x, j = x,y, we have, 

(6.4) 

This is the first row of Table 1.6. 
The index notation is efficient because one equation such as Equa­

tion 6.2 can replace three algebraic equations in Table 3.1. 
Similarly, the stress-strain relation in terms of compliance is simply 

(6.5) 

For the in-plane behavior of symmetric laminates, we can define 

(6.6) 

Substituting the stress -strain relation in terms of stiffness modulus, 

(6.7) 

If we assume that the in-plane strain is constant, it can be taken out of 
the integral sign; then we can define the in-plane modulus as: 

A--= J Q--dz 
I} I} 

Then the in-plane stress-strain relations are: 

N; = A;i'=t 

e<? = a;iNi I 

(6.8) 

(6.9) 

(6. I 0) 

These relations are shown in longhand in Tables 4.1 and 4.2, respec­
tively. 

For the flexural behavior of symmetric laminates, we can define 
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(6.1 I) 

From which we can define the moment-curvature relation: 

(6.12) 

and the flexural modulus: 

(6.13) 

The moment-curvature relation in terms of compliance is: 

(6.14) 

These relations are shown in Tables 5.1 and 5.2, respectively. 
The symmetry condition such as 

(6.15) 

can be expressed as 

(6.16) 

Similarly, we have 

(6.17) 

Instead of the index notation, we can use a matrix notation to 
express the same relations above. Bold face letters (which can also be 
represented by the underlined letters) represent matrices. The indices 
can be eliminated. Equations 6.6 et al. can be rewritten as: 

N = f odz

A= f Qdz

(6.18) 

(6.19) 
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(6.20) 

e
0 

= a N (6.21) 

M = f ozdz (6.22) 

M=Dk (6.23) 

D = f Qz2 dz (6.24) 

k =d·M (6.25) 

Matrix multiplication is implied when two matrices are placed side by 
side . 

Notations are artificial and arbitrary. Symbolically they convey 
mathematical operations and meanings. Each notation has its advan­
tages and drawbacks. The selection of a notation is often dictated by 
the particular problem on hand as well as the subjective judgment of 
the user. Basically, notations are intended to help rather than to hinder 
communication and understanding. When in doubt, we should resort to 
the conventional, longhand operations. This will prevent the misapplica­
tion or misinterpretation of a notation. In the study of general lam­
inates, we will use both index and matrix notations. 

2. stiffness and compliance of general laminates

General laminates are normally unsymmetric. In our context, they can 
be antisymmetric and hybrid. General laminates have not been used 
extensively to date for a number of reasons. First, the unsymmetrical 
laminate will warp after curing and cool down. It may be difficult to 
meet the dimensional control of a structure. Secondly, the analysis of 
unsymmetrical plates and shells is more difficult than that for sym­
metrical structures. Designers feel less experienced working with the 
unsymmetrical construction and are therefore reluctant in using such 
unfamiliar construction. But there are many familiar general laminates 
which include built-up constructions where material cross-sections vary 
across the depth of a beam or plate. Hybrids are another form of 
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In place of the longhand derivation from Equations 6.28 to 6.33, we 

have from Equations 6.7, 6.2 and 6.27: 

(6.34) 

(6.35) 

Since €
0 and k are independent of z, they can be taken out of the 

integral signs, 

(6.36) 

(6.37) 

where 

(6.38) 

This is the coupling modulus, which links curvature to stress resultant. 

In symmetric laminates, we have by definition: 

(6.39) 

This can be seen in Figures 5.1 and 5.2. The ply orientation is sym­
metric with respect to the midplane. The modulus is an even function 

in z. We will first split the integration in Equation 6.39 in two parts: 

0 h/2 f Qi.zdz +f Qi.zdz 
-h /2 I O I 

(6.40) 

(6.41) 
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By virtue of the symmetry conditions of the modulus in Equation 6.39, 

we can change z to -z in the first integral in Equation 6.41, then 

(6.42) 

We can also show a coupling between in-plane strain to moment as 

follows: 

From Equation 6.11 

(6.43) 

Substituting Equations 6.2 and 6.27 

(6.44) 

(6.45) 

(6.46) 

Note the reappearance of the same coupling matrix here as that in 
Equation 6.37. We can now combine Equations 6.37 and 6.46. 

{ N; - A;;E'J + B;1k1

Mi = Bii€J + Diiki 
(6.47) 

These six equations represent the stress-strain relation in terms of 
modulus of a general laminate. The modulus is a 6 X 6 matrix. These 
equations when expanded into longhand expressions are: 
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general laminates where plies of different materials or different con­
struction of the same material (woven vs nonwoven) are combined. 

Then there is a class of antisymmetric laminates which have unique 

properties. 
We intend to show in this chapter that general laminates are no more 

uncontrollable than the symmetrical, homogeneous laminates. The 
same theory and material property data control the behavior of all 
laminates. General laminates have properties which can be effectively 
utilized to produce unique performance. In many applications, only 
minimum gage laminates are required. Unsymmetrical laminates can 
save 50 percent in weight. Other applications may call for predeter­
mined warpage. Use of antisymmetric construction can provide unique 
coupling. We are therefore not in a position to write off general lam­

inates just because they are more difficult to analyze than symmetric 
laminates. 

The key feature of general laminates lies in the additional degree of 
coupling, as we will see presently. The basic behavior of this class of 

laminates is governed by the strain distribution across the thickness of 
the laminate. By combining the previously assumed strain for both the 
in-plane and the flexural deformation, that is by taking the strain dis­
tribution up to the linear term, we will have 

(6.26) 

In index notation, we have 

(627) 

Unless otherwise stated, the range of index is always 1, 2, and 6, or i =
1,2,6. The assumed strain components are shown in Figure 6.1. No 
reference is made concerning the material property. The strain, as 
always, is defined by geometry with no direct connection to equi­
librium or material property. Stress, on the other hand, must satisfy 
equilibrium; stress-strain relations must reflect material behavior and 
property. The assumed strain is applicable to all materials, homo­

geneous and hybrid composites. 
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Figure 6.1 Assumed linear strain distributions for general 
laminates. 

We will now substitute the assumed strain in Equation 6.26 into the 
definition of stress resultant, we have 

Ni = f (Qi dE� +~zk i ] + Q i 2 [� + zk2 ] + Q i 6 [e� + zk6 ])dz 
(6.28) 

(6.29) 

(6.30) 

Similarly 

N2 = A2 i � + A22 e� + A2 6e� + B2 i k i + B22 k2 + B2 6 k6 

(6.31) 

(6.32) 

where the components of the new coupling modulus are: 

(6.33) 
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Ni =AiiE� + Ai2E� + Ai 6e� +Biiki + B12 k2 + B16k6 

N2 = A2i� + A22e� + A26e� + B2 1 ki + B22k2 + B2 6k6

N6 = A6 I€� + A62 e� + A66e� + B61 k1 + B62 k2 + B66k6 

M, = B11e� + Bi2€� +B,6e� + Di I ki + D12k2 + Di 6k6 

M2 = B2 i e� + B22e� + B26€� + D2 I k, + D22k2 + D2 6k6 

M6 = B6 i e� +·B62e� + B66e� + D6 i k1 + D62 k2 + D66k6 

(6.48) 

Or, in matrix multiplication table we have in Table 6.1 the stiffness and

its inverse, the compliance, of a general laminate.

table 6.1 
stiffness and compliance of a general laminate 

N, 

N2 

N 6 

M, 

'M2 

M6 

€0 

I 

A11 

A21 

€.0 € 0 

2 6 *,
I 

A12 A16 I 811 

A22 A26 1 821 I 

*2 k6 

8,2 °'6 

822 826 

862 866 A61 A62 A661 861 
------- '-------
°'' 8,2 °'6 

I 
0,, I °'2 0,6 

82, 822 826: Oz, 022 026 

861 862 866 1 061 0 62 066 

€0 

I 

€ 0 

2 

€.0 
6 

k, 

k2 

k6 

N, N 2 N 6 M, 

a
ll 

a,2 a,6 I ,0,,
I 

az, a22 a26 I ,B2, 
I 

a6/ 
a62 a66 l 411 

M2 M6 

,8,2 ,e,6 

42,B26 

4246 
_______ T _______ 

4, 4, ,B6, I �, 8,2 8,6 

,8,2 
I 

42 421 �, �2 826 
I 

862 /1,6 ,Bz6 ,0661 861 866 
I 

Both 6 X 6 matrices are symmetric. This requires that one coupling 
compliance matrix is the transpose of the other. 

As a comparison we show in Tables 6.2(a) and (b) the modulus and 
compliance of symmetric and homogeneous anisotropic laminates, 
respectively. In the homogeneous laminate, the flexural components are 
directly related to the in-plane components. 

I 

table 6.2(a) 
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stiffness and compliance of a symmetric anisotropic laminate 

€0 
I 

t:.O 
2 

€.0 
6 k, *2 k6 N, � N.s M, Mt Mt; 

I I 

N, All A,2 A,61 
I

� A
2, '12 A

.as l 

N 6 At;, Au A66: 

c,' 011 o,., 016 
I
I 

� 
I 

o.,, 
022 Oas I

€0 0
6/ 

0
62 

I 
6 

0661 
---------r--------

Io,, 0,2 0,6 k, 

----------r---------

I d,1 d,2 d16 

I 

� I q, O
zz 

0
26 I 

M6 
I 

0
62 I�, 066 

kz I dz, d22 dz6 
I 

klS
I du d661d61 

table 6.2(b) 
stiffness and compliance of a homogeneous anisotropic laminate 

c/ €0 
2 

€
f k, k z k,, N, I¼, NIS M, � MIS 

N, All A,2 
I 

A,61 
I 

� Az, A22 A21SI 

N6 A6, AR 
I 

Aul 

c,' 
I 

011 o,., o,,s,
I 

� 021 0
22 

0
.as I 

I 

� 06/ 0
62 

I 0u, 

M, 

---------r--------

I k, 

----------r---------

I 

� I 

� I 

I 

Or, in matrix notation, 

1,2 
72Aq k

., 

k6 

N=AE°+Bk 

M=BE° +Dk 

I 

I 

12 

fiioii 

(6.49) 

(6.50) 

or in t&ms of a matrix multiplication table we have Table 6.3 . 



• 

, 

228 introduction to composite materials 

table 6.3 

generalized stress-strain relations in terms 

of stiffness modulus 

�" k 
�o 

N 
--

k 

I N A B N 
,-.. - m - -'- - - - -

M B D M N I Nm 

The matrix quantities above are column or row, and square matrices as 
follows, in curly, and square brackets, respectively: 

N, 

N=N;= N2 

N6 

e1 

eo =e1= €0 
2 

€0 
6 

A= Aii = 

B = B;i =

, J1 =M; =

k=k-
=

, I 

A11· A12 

A2 I A22 

A6 I A62 

B, I B, 2 

B21 B22 

B61 B62 

M1 

M2 

M6 

k1 

k2 

k6 

A16 

A26 

A66 

B, 6 

B26 

B66 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

j 

l 

t 
. , 

I 
1t 

I 

:,� 

i 
j 
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(6.55) 

where i,j = 1,2,6. 
We need also to define the inverse of matrices. We have 

a = A- 1 
, and d = D- 1 (6.56) 

These inverse relationships are implied in Tables 4.1 and 4.2 for the 
in-plane behavior; and in Tables 5.1 and 5.2 for the flexural behavior . 
We now will find the generalized stress-strain relation in tenns of com­
pliance, which is the inverse of the 6 X 6 modulus matrix shown in 
Table 6.1. 

Premultiplying Equation 6.49 by the inverse of A or simply a,

Since 

We have 

aN = aAt:° + aBk

aA = 1, where 1 is unity matrix 

eD = aN-aBk 

Substitute this into Equation 6.50, we have 

M = BaN-BaBk +Dk 

BaN + (D -BaB)k 

(6.57) 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

We can show .. the last two-equations in a tabular form in Table 6.4. 
They are useful for structures with fixed cylindrical cross sections such 
as tubes and pressure vessels. 

. 1 
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table 6.4 
generalized stress-strain 

relation in terms of N and k �o 

M 

N k 

a -aB 

Ba D-BaB

The relationship in Table 6.4 is a partial inversion of that in Table 6.3. 
Wt; now will derive the complete inversion. 

Continuing with our matrix algebra, we can premultiply Equation 
6.61 by (D-BaB)-1

, then after transposing we have 

k = -(D - BaB)-1 BaN + (D - BaBr 1 M 

Substituting this into Equation 6.59, we have 

E° = aN-aBk 

= [a + aB(D - BaB)-1 Ba] N - aB(D - BaB)-1 M 

= 01.N-{3M 

(6.62) 

(6.63) 

(6.64) 

We can now show the last two equations in Table 6.S(a) which is now 
the complete inversion of Table 6.1 or 6.3; i.e., the independent vari­
ables are N and M. The material coefficients in this table are the com­
ponents of compliance. 

table 6.5(a) 

generalized stress-strain relation in terms of 

compliance 

N M 

�o a+ aB(O-BaB)-1 Ba -aB(O-BaBr1 

k - (0-BaBr' Ba (O-BaBr1 

The two coupling matrices are transposed of each other. They need not 
be symmetric. 
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It is useful to designate the compliance in Table 6.S(a) in Greek letters 
in the same matrix multiplication format. 

table 6.5(b) 
generalized stress-strain relation in terms of compliance in 

greek 

N M 

�o a ,8 
k ,BT 

8 

N M 

m I I 

71,-;:;-
1-------a----

I I I 

N: Nm 

This table is the inverse ofTable 6.3. This can be expanded like Equa­
tion 6.48 for the modulus. This is shown as follows: 

e1 = 0/.11N1 + 0/.12N2 + 0i.16N6 +f311M1 + f31 2M2 + f316M6 

� = 0/.21N1 + a22N2 + 0/.26N6 + f32 1M1 + f322M2 + f326M6 

ei = 0/.61N1 + a62N2 + a66N6 + (36 1M I + f362M2 + {366M6 

(6.65) 
k1 = /311N1 + f32 1N2 + (36 1N6 +<'>11M1+<'>12M2 + <'>16M6 

k2 = f31 2N1 + f322N2 + (36 2N6 + <'>21M1 + <'>22M2 + <'>26M6 

k3 = f316NI + {3z-6N2 + -(366N6 + 661M1 + f>62M2 + 666M6 

This equation is also shown in Table 6.1 together with its inverse, the 
modulus. Note that in the absence of coupling, 

B = 0 

(3 = 0 

the equations in Tables 6.S(a) and (b) reduce to those of the uncoupled 
or symmetric laminates of previous chapters, and Table 6.2(a) .
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E° = aN 

<X = a 

(6.66) 
k =dM 

6 = d 

These relations are valid only for symmetric laminates. They are not 
valid for general laminates, i.e., 

(6.67) 
6 -=I= d 

3. evaluation of components of modulus

We will now evaluate all the components of modulus listed in Equation 
6.48 and Table 6.1. These components of modulus are evaluated by 
performing the following integrations: 

(6.68) 

This equation is written with the implied convention that each term in 
the bracketed quantity on the left-hand side of the equation has a 
corresponding term in the bracket on the right-hand side of the equa­
tion. For general laminates, the limits of integration is from -h/2 to 
h/2. This is different from the limits for the symmetric laminates from 
the mid plane (z = 0) to the top face of the plate where z = h/2. If each 
ply consists of homogeneous materials, with even number of plies we 
can replace the integration by summation as follows: 

n/2 

t=l-n/2 

QU) [t -(t-1)] 
IJ 

(6.69) 
(continues) 
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h� 
B-- =-

,, 2 

hJ 
D-- = -

,, 3 

n/2 

I: 
t= l-n/2 

n/2 

t=l-n/2 

(6.69) 
( concluded) 

The modulus of general laminates is proportional to the modulus of 
each ply multiplied by the weighting factor that appears in the bracket 
of the equation above. A similar weighting factor was used for the 
evaluation of flexural modulus in Equation 5.49. The terms used in 
Equation 6.69 are defined in Figure 6.2. Index tis the ordinal number 
for individual plies as they go from I -n/2 to n/2, where n is even and 
equal to the total number of plies. It is further assumed that all plies 
have the same thickness. With the assumptions above, we can show the 
numerical values of the weighting factors in Equation 6.69 for a general 
laminate up to 16 plies thick. This is shown in Table 6.6. 

n/2-th above 

2nd above 
MID /st above 

'LANE /st below 
2nd below 

n/2-th below 

t=f 
t= .!}-1 

t=2 
t=I 
t=O-'­
t=-1 
t=-2 

t= !--ff 
t= -; 

Figure 6.2 Nomenclatures for general laminates 
with even plies. Summation in Equation 6.69 is 
indexed from top surface of each ply; i.e., from 
t = l-n/2 tot = n/2. 
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table 6.6 

weighting factors for general laminates 

1-(1-1) 12 -(1-1)2 t3 -(1-1)3 

Ply Order 1 (A;j) (B;j) (D;j) 

8th above 8 15 169 

7th above 7 13 127 

6th above 6 11 91 

5th above 5 9 61 

4th above 4 7 37 

3rd above 3 1 5 19 

2nd above 2 1 3 7 

mid- 1st above 1 1 1 mid-

plane 1st below 0 1 - 1 1 
plane 

2nd below -1 1 -3 7 

3rd below -2 - 5 19 

4th below -3 - 7 37 

5th below -4 -9 61. 

6th below -5 -11 91 

7th below -6 -13 127 

8th below -7 -15 169 

Note that the numerical values for the in-plane modulus is unity; the 
in-plane modulus is independent of the stacking sequence. T�is was true 
for the symmetric laminates; this is also true for general laminates. The 
in-plane modulus is a function of the volume fraction of the constituent 
plies. The positions of the plies do not affect the in-plane modulus:

This, of course, is not true for the coupling and flexural modul�- The 
weighting factors increase as they go away from the mid-plane. This can 
be seen by the numerical values in the last two columns of Table 6.6. 
The values for the coupling modulus are antisymmetric with respect to 
the mid-plane. The values for tho, flexural modulus are symmetric with 
respect to the mid-plane. These weighting factors as functions of the 
ply ordinal number t are plotted in Figure 6.3. 

The evaluation of the modulus of general laminates can also be 
achieved by using either the direct summation in Equation 6.69, or the 
geometric factors, the V's, as was done for the in-plane and flexural 

I 

l 
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Ply Order Ply Order 

6 6 

4 4 

-9 -7 -5 -3 {t!(t-t):/ 2 {t3

- (t-1)1/ 
5 7 9 BO 120 

-2
-4 -4

-6 -

-6 

(a) (b) 

Figure 6.3 Weighting factors for coupling and flexural moduli. They are shown 
in (a) and (b) respectively. The factors are antisymmetric for coupling modulus; 
symmetric, for flexural modulus. 

modulus earlier. The advantages of using the V's are: 

• Close relationship between the formulas for the modulus and the
multiple-angle transformation equations.

• The geometric parameters of a laminate such as the stacking
sequence and unit ply thickness are embodies in the V's. If a
different ply material is used or the same ply material changes
properties (due to temperature, for example) the V's are not
affected .

• Four of the V's are also used for the calculation of the non­
mechanical stress resultants and moments due to temperature
change and moisture absorption. The V's again reflect the geo­
metric parameters of a laminate.

The limitation of the use of V's is that the material of the ply must 
remain the same. This, of course, would not be the case of hybrid 
composites. In place of the summation in Equation 6.69, we can use 
the V's in the following equations for the evaluation of the modulus of 
general laminates. Taking a typical component of this stiffness modulus 
for symmetrically located core:

- I 
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f h/2 
I 2 

[A B ,D 1 I ] = Q I i [ 1,z ,z ] dz
II• II -h/2

=f 1112 
[U1 + U2 cos20 + U3 cos40][1,z,z2 ]dz 

-h/2 

h/2

f
h/2

2 = 
u

1 f [ l,z,z2 ]dz + u2 cos20[1,z,z )dz

-h /2 -h /2 

J 
h/2 

+ u3
cos40 [ 1,z,z2 ] dz

-h /2

(6.70) 

(6.71) 

(6.72) 

Similarly we can obtain the other components of the modulus as 
follows: 

= U1 [h,0, h3 ]- U2 [V1A , ViB, Vwl + U3 [V2A , V2B, V2nl 
12 (6.74) 

U4 [h,O, :: ]- U3 [ V2A, VZB, Vrnl ( 6. 7 5) 

[A66 ,B66 ,D66 ] = U5 [h,0, �; ]- U3 [V2A, V2B. V2n] (6.76) 

(6.77) 

(6. 78) 

l 

-t

I 

I 
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where the geometric factors are: 

h/2 - - - - -- -
h/2 

Vi A =f cos20dz, Vi B =f cos20zdz, 
-h/2 -h/2 

f
h/2 =f h/2 

V2A 
= 

cos48dz, V2B = cos48zdz, 
-h/2 -h/2

J 

h/2 h/2 
v3A = sin20dz, v3B =f sin20zdz, 

-h/2 -h/2 

f 
h/2 h/2 

v4A = sin48dz, V4B -j ' sin48zdz, 
-h/2 -h/2 

h/2 
Vin -=f cos20z 2dz 

-h/2 

(6.79) 

i h/2 
2 _ V2 n = cos48z dz 

-h/2 

(6.80) 

V3D = sin28z2dz f
h/2 

-h/2 

(6.81) 

V4n = sin48z2dz f 
h/2 

-h/2

(6.82) 

The formulas for the in-plane and flexural modulus are exactly the 
same as those in Tables 4.3 and 5.3. We only need to change the limits 
of the integrals in Equation 5.40. The location of the core may not be 
symmetric. The simple core/thickness correction such ash* does not 
always exist. We present the formulas for the coupling modulus in 
Equation 6. 73 et al. in matrix multiplication in Table 6. 7. The lack of 
invariants is a key feature. All components of this coupling modulus 
can change sign. 

table 6.7 

formulas for coupling modulus of general 
laminates with symmetric core 

U2 u., 

B,, V,a V2a 

822 -V,a V2a 

B,2 -V2a

866 - V2a

Btt; 
I 

Fv.18 V,.a

82ti
I 

2'<ra -v
,.a 
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Only the volume fraction of ply orientations, not the lack of mid­
plane symmetry, affect the in-plane modulus of a general l�mina�e. The 

graphic solutions in Figure 4.11 and the other formulas m Chapter 4 
remain valid. The in-plane compliance, however, is sensitive to the 
stacking sequence of the laminate. For a general laminate the in-plane 
compliance is given in Table 6.5b and repeated here 

a = a + aB(D - BaBr1 Ba (6.83) 

Note the presence of the coupling matrix. Only in the case of a sym­
metric laminate 

a=a 
(6.84) 

Again we can show the integration of the V's from Equation 6. 79 to 
6.82 can be replaced by summation if each ply consists of homo­
geneous material. This is done for a typical value of Vas follows: 

m 

Vin =½ L cos20;[zf-zf_iJ (6.85) 

i= 1 

Again the quantity in the bracket can be expressed in terms of the 
ordinal number of the plies and this is done as before and the result is 

n/2 

L 
t=I-n/2 

(6.86) 

where index t is defined in Figure 6. 2, and the value in the bracket is

given in Table 6.6. 
The V's for the coupling modulus can also be replaced first by a

summation then by the ordinal numbers of the plies. This is done as

follows: 
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fh/2 

Vi a = cos20zdz 
-h /2

m 

= .!. \ cos20-[z� - z� ] 
2 L I I 1-l 

i= 1 

n/2 

2 
cos20 t [ t2 

- (t-1 )2 ]

t= 1-n/2 

(6.87) 

(6.88) 

(6.89) 

Note that the weighting factors in the equations above are shown in 
Table 6.6 and Figure 6.3. 

4. unsymmetric cross-ply laminates

We will calculate the stiffness and compliance of a class of cross-ply 
laminates made of T300/5208. We will first examine a 16-ply laminate. 
The minimum number of ply groups is two, the laminate will have eight 
�degree plies in the lower half of the laminate and eight 90-degree plies 
m the upper half; see Figure 6.4(a). We can increase the ply groups to 
four which will have four plies at zero followed by four plies at 90 in 
the lower half of the laminate, then four plies of zero and four plies of 
:0 in the upper half; see Figure 6.4(b). As the number of ply groups 
increase, we will examine the effect of this on the modulus and com­
pliance of the cross-ply laminate. In the limit as the number of ply 
groups increase we should recover the quasi-homogeneous laminate. 

The modulus of cross-ply laminates can be calculated using Equation 
6.69 and the numerical values in Table 6.6. There is no need to cal­
culate the in-plane modulus of laminates because the same rule of mix­
tures equation for the symmetric laminates is applicable to the general 
laminates. We would therefore concentrate on the coupling modulus 
and the flexural modulus. There are two ways of calculating the 
coupling and flexural moduli from Table 6.6. The first method is to 
follow Equation 6.69 precisely, and the laminate shown in Figure 
6.4(a) is 
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Let 

= 
h� [ Q 1 1 (-1 5 - 13 - 11 - 9 - 7 - 5 - 3 - 1)

B11 2 

+ Q22 (15 + 13 + 11 + 9 + 7 + 5 + 3 + 1)]

h = 125 X 10-6 m 
0 

8h
0 

= 10-3 m 

Q = 181.8 GPa 
xx 

Q = 10.3 GPa 
yy 

B11 =
10-3 

(-181.8 + 10.3) = -85.7 kN 
2 

1 
h 

1 

90s 

Os

m=2 
(al 

m=4 
(bl 

a 

m= B 
(cl 

Figure 6.4 Unsymmetric cross-ply larr�inates w_ith �ifferent
ply groupings. This particular change m groupmg 1s done by 
subdividing each ply group into two sub-groups. 

(6.90) 

(6.91) 

(6.92) 

(6.93) 

i 
i 
f 
i 
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There is another way of using Table 6.6 for the same cross-ply 
laminate. This is done by treating each ply group as a new unit ply. 
Then the effective unit ply thickness in Equation 6.69 in this case is 
increased eight fold. The weighting factor now will be -1 for the 
0-degree ply and + 1 for the 90-degree ply, as compared to -64 and
+64 respectively. With this method, we can arrive at Equation 6.91
directly. 

If the ply group is doubled, the laminate now shown in Figure 
6.4(b) is 

Using the first method: 

+ Qxx O + 3 + 5 + 7) + Q
yy

(9 + 11 + 13 + 15)]

= -42.8 kN

(6.94) 

(6.95) 

(6.96) 

This is one half of the value in Equation 6.93. Using the second 
method: 

The equivalent unit ply thickness = 4h
0 

(6.97) 

(6.98) 

This is the same as Equation 6.95. There is a fundamental difference 
between the coupling modulus and the in-plane and flexural moduli in a 
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general laminate. The principal components of the coupling modulus

can be negative. This does not violate materials stability because all

components of the coupling modulus are off-diagonal terms in the

6 X 6 matrix in Table 6.1. 
Since the Poisson and shear components are equal, i.e.,

Then 

Q
(O) 

= Q(90) 
xy xy 

Q(O) 
= Q(90) 

ss s s  

(6.99) 

(6.100) 

for all cross-ply laminates. Similarly, since shear coupling is zero for 
on-axis plies, 

(6.101) 

For flexural modulus, it is easier to use the second method (the 
equivalent ply thickness method). From Equations 6.69 and 6.90 

= 64.0 Nm 

.!.(181.8 + 10.3) 
3 

From Equation 6.94 for the 4-ply group laminate: 

= 64.0 Nm 

(6.102) 

(6.103) 

(6.104) 

(6.105) 

Note that flexural modulus is not affected by the number of ply 
groups. This is because the weighting factor is symmetric (see Table 6.6 
and Figure 6.3) and the stiffness of unidirectional plies is also sym­
metric with respect to the material axes. The resulting stiffness of 

I 

I 

l 

properties of general laminates 243 

unsymmetric cross-ply laminates is shown in Figure 6.5. The ply group 
number m has effect on the coupling modulus B only, and m does not 
appear at all in A and D.

N, 

N2 

N6 

M, 
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IT/ 5.T 192 I m 
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I 

-17.3 I-I.I 38.8
I 

I 
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209 

Figure 6.5 Stiffness and compliance of TJ00/5208 unsymmetrical 16-ply cross-ply 
laminates. The stiffness is for all m values although m affects only the coupling 
stiffness. The compliance is for the. case of m = 2; see Figure 6.4(a). The physical 
dimensions are also shown . 

We can compare the A matrix in Figure 6.5 with the in-plane 
stiffness of the laminate [0/90] s in Equation 4.51, we see they are 
identical. There is no influence on this stiffness by the number. of ply 
group, or with or without the midplane symmetry. 

We can also see that the D in Figure 6.5 is equal to the flexural 
modulus of a quasi-homogeneous (0/90] laminate shown in Equations 
5.69 and 5. 74. They are identical because for this particular laminate 
the weighting factor in Table 6.6 for D is symmetric with respect to the 
midplane. The 0 and 90 degrees are so located in Figure 6.4, their 
contribution to the flexural modulus is not sensitive to their position, 
i.e., (0/90) T or (90/0) r, or to the number of ply groups if they change
-according to the pattern in Figure 6.4. If we have a laminate such as
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[ 04 /908 /04 ] r the flexural modulus will be highly sensitive to the 
stacking sequence, although the in-plane modulus will remain constant. 

Since the flexural modulus is equal to that of a quasi-homogeneous 
laminate, we see that Equation 5.109 is valid 

h2 D .. =-A--
11 12 1/ (6.106) 

where h = 2 X 10-3 m for our unsymmetric laminate in Figure 6.5. This
equation is the necessary but not sufficient condition for a quasi­
homogeneous laminate. The other condition is for B = 0; i.e. no in­
plane and flexural coupling. We may call this general laminate pseudo-
homogeneous. 
' Being an unsymmetric laminate, the compliance in Figure 6.5 will be 
affected by the presence of the B matrix. The inequalities in Equation 
6.67 are valid. We can see this if we compare the following: 

G'.
1 I = 12.9 (GN/mr1 

a
11 

= 5.205 (GN/mr1 

The latter is taken from Equation 4. 51. Similarly, 

01 1 = 38.8 (kNmr1 

d11 = 15.62 (kNmr1 

The latter is taken from Equation 5. 74. It is interesting that the com­
pliance in Figure 6.5 is also pseudo-homogeneous because 

12 
= - G'.·· 

h2 I} 
(6.107) 

and {j is not zero. Equation 6.107 is analogous to Equation 5.110 for 
truly or quasi-homogeneous laminates. 

Typical results of the selected components of stiffness and com­
pliance of our unsymmetric cross-ply laminates as ply groups change, 
are shown in Table 6.8. 

table 6.8 
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selected stiffness and compliance components T300/5208 unsymmetrical
cross-ply laminates 

m 

2 

4 

8 

00 

B11 =-B22 

kN 

-85.7

-42.8 

-21.4

0

a11 = a22 

(GN/mr1 

12.9 

6.12 

5.41 

5.20 

/311 = -/322 li11 =li22 

(MNr1 (kNmr1 

17.3 38.8 

4.09 18.3 

l.81 16.2 

0 15.6 

With these constants, it is possible to show the strain distribution in a 
laminate subjected to uniaxial stress resultant or bending moment. 

• For N 1 =I= 0

From Equations 6. 26 and 6.65

= ,o-3
m 

Form = 2 

= 30.2, -4.4 (GN/mr1 

Form= oo 

(6.108) 

(6.109) 

(6.110) 

(6.111) 

(6.112) 
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• For M 1 =I= 0

(6.113) 

Form = 2 

(6.114) 

= 56.1, -21.5 (MNf1 (6.115) 

Form = 
oo

(6.1 I 6) 

The strain distribution due to simple tension or bending is shown in 
Figure 6.6. Under tensile load, unsymmetric cross-ply laminate will 
warp. The upper half will stretch more than the lower half. The 
90-degree plies are in the upper half for the m = 2 case. The particular
coupling in this laminate induces greater strains which may be undesir­
able. With the stiffness and compliance of the laminate known, a 
systematic study on the effect of various lamination parameters 
becomes possible. With the exception of the 6 X 6 matrix inversion, 
general laminates are as simple as symmetric laminates. 

z 

Imm 

-/0

-/mm 

(o) 

m ( Ply Groups) 
C04 2 

_§_(GN/mF' 
N, 

z 

(b) 

m(Ply Groups) 
co 4 2 

Figure 6.6 Strain distribution of unsymmetric cross-ply laminates. As number 
of ply groups varies from 2 to infinity, the strain changes. Figure on the left 
is uniaxial tension; on the right, simple bending. The material is T300/5208 . 

I 
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In conclusion, unsymmetric cross-ply laminates are different from 
symmetric laminates because of two nonzero components of the 
coupling moduli. Their values, as shown in Equation 6.93, 6.96 et al., 
and in Figure 6.5 are: 

where 

h = total laminate thickness 
m number of ply groups 

1 
U2 = 2 £Qxx -Qyyl

(6.117) 

(6.118) 

Thus the coupling components are proportional to the difference 
between the principal modulus, and inversely proportional to m. As the 
number of ply _grnups inc!ease, the coupling modulus vanishes. In the 
limit when m becomes infinity, bending and stretching are uncoupled. 
As shown in Figure 6.6, strain is constant in (a), and is antisymmetric 
in (b).

A 
_
simple illustration of the coupling term of this laminate is seen by 

the induced moment needed to prevent warpage. This is shown in 
Figure 6. 7. In this laminate the lower half is O degree; the upper half, 
90 degrees; i.e., [0/90]r. 

Figure 6.7 Stress resultant and induced moment 
of an unsymmetric cross-ply laminate under 
uniaxial extension. The induced moment is in 
the direction that prevents warpage. 
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We have seen the range of variation of the stiffness and compliance 
of an unsymmetric cross-ply laminate as functions of the number of ply 
groups. The features of this class of laminates can be summarized by 
the generalized stress-strain relation in Table 6.9 where matrix multipli­

cation is implied. 

table 6.9 
generalized stress-strain relations of unsymmetric cross-ply laminates 

� t:.O 2 
1:.0 

6 
k, *2 k

6 
Ni 114 t¼ M, � M6 

I 
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1:,0 a2, a22 
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42 2 I 
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N6 A66l 
€:0 a66

1 
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---------r---- ----

B,, 14, �2 
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----------r---------

k, �/ I 8// 8,2 
I 

� �2 14, 0
22 

I 

k2 42 : Oz, 822 
I 

M6 
I 066 I k6 

I 866 I 
I ' 

But the table above can be rearranged to show that the shear and 
twisting components are uncoupled. This is shown in Table 6.10 which 
is merely a repackaged arrangement of Table 6.9. 

table 6.10 
repackaged stress-strain relations of unsymmetric cross-ply laminates 

t:"o 
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€:0 
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We only need to invert a 4 X 4 matrix instead of a 6 X 6. Secondly, the 
shear and twisting behavior of our unsymmetric cross-ply laminate 
behaves exactly like a homogeneous plate. The ply grouping and mid­
plane symmetry have no effect on the shear and twisting properties. 
This fact can be utilized in the design of a part requiring the minimum 
gage. It is not necessary to use symmetric laminates. 

5. antisymmetric laminates

This class of laminates is neither symmetric nor unsymmetric. It is also 
called quasi-symmetric. Instead of a symmetry with respect to the mid­
plane that 

0(z) = 0(-z) (6.119) 

we have an antisymmetry that 

0(z) = -0(-z) (6.120) 

The ply orientations are odd functions with respect to the midplane. A 
two-ply angle-ply laminate such as 

(6.121) 

is antisymmetric. This class of laminates has values beyond academic 
curiosity. 

With antisymmetry, the following components of stiffness remain 

symmetric or even; 

Q I I (z) = Q I I (-z) 

(6,122) 

The shear or normal coupling components, however, are antisymmetric 

or odd; 

(6.123) 
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The weighting factors for the integration of Equation 6.68 are anti­
symmetric or odd for the coupling modulus; and symmetric or even, for 
the flexural as well as the in-plane modulus. These factors are shown in 
Figure 6.3 and Table 6.6. Because of the interaction between odd and 
even functions, the following components of modulus will va,nish for 
antisymmetric laminates: 

(6.124) 

(6.125) 

We will now examine a special antisymmetric laminate made of 
T300/5208 material with the following stacking sequence form = 2, 4, 
8, and 16, respectively. 

[-45s/458 Jr, [-454 /454 ] 2r, [-452 /452 ] 4T, [-45/45lsr 

(6.126) 

These laminates are shown in Figure 6.8. 

T 45

l -
�
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-45
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(b) 

45 

-45

45 

-45

45 

-45

45 

-45

m=8 
(c) 

4 

m=/6 
(d) 

Figure 6.8 Special antisymmetric laminates with different number of ply 
groups. 

For ply orientation of ±45 degrees, the coupling terms of a unidirec­
tional composite are: 

1 
Ql6 = Q26 = ±-U22 

I 
= ±

4 [Qxx -Qyy l

(6,127) 

(6.128) 
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From Equation 6.69 and Table 6.6 we have form = 2: 

= 42.8 kN 

As m = 4, we can readily show that 

BI 6 = B2 6 = 21.4 kN 

Thus a general relation that 

seems to be valid . 

(6.129) 

(6.130) 

(6,131) 

(6.132) 

The flexural modulus for this laminate is orthotropic because the 
shear coupling terms are cancelled. The remaining components will 
behave like those of a pseudo-homogeneous laminate, for which the 
following relation applies: 

(6. I 33) 

Using the unidirectional stiffness for 0 = 45 degrees from Chapter 3 
(Table 3.5). 

Q11 = Q22 = 56.6 GPa 

Q12 = 42.32 GPa 

Q66 = 46.59 GPa 

(6.134) 

The shear and normal coupling terms of this modulus are not needed. 

For our 16-ply laminate 

h3 
= (16 X 125 X 10-6)

3 
= 666 X 10-12 312 12 

m (6.135) 
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Combining the equations above, 

D11 = D22 = 56.6 X 666 = 37.7 Nm 

D1 2 = 42.32 X 666 = 28.2 Nm 

D66 = 46.59 X 666=31.0 Nm 

(6.136) 

(6.137) 

(6.138) 

The flexural modulus for this laminate, like that for the unsymmetric 
cross-ply, will be unaffected by the number of ply groups. In fact, they 
are the same as those for symmetric laminates, in Equation 5.114 with­
out the shear coupling terms. This laminate is pseudo-homogeneous. 

The resulting stiffness and compliance of an antisymmetric laminate 
is shown in Table 6.11. Before we invert the 6 X 6 matrix to determine 
the compliance, we can save ourselves much work if we repackage the 
modulus matrix in Table 6.11 into two 3 X 3 matrices which we can 
invert by hand if necessary. This rearrangement was done for the cross­
ply laminate in Table 6.10. For the antisymmetric case, the repackaged 
matrices are shown in Table 6.12. In addition to the simplification in 
matrix algebra, the couplings in antisymmetric laminates are very 
specific and special. It is a challenge to the designer to capitalize on the 
special quality and opportunity provided by antisymmetric laminates. 

table 6.11 

stiffness and compliance of an antisymmetric laminate 
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table 6.12 
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repackaged stiffness and compliance of the same antisymmetric laminate in

Table 6.11 

€0 
I tef- *s *, *2 €.0 
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Numerical data of [-45/45] T laminates of T300/5208 are shown in 
Figure 6.9. The modulus is for all values of m, the number of ply 
groups. This correction factor appears in the denominator of the 
coupling components only. The compliance shown in Figure 6.9 is for 
the case of m=2 only.
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Figure 6.9 Stiffness and compliance of T300/5208 antisymmetric laminates 
(-45/45]. The modulus is for all values of m; the compliance, form = 2 only. 
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Similar to the comments made to the unsymmetric cross-ply lam­

inate, we can compare the A in Figure 6. 9 with the symmetric angle-ply 
in Table 4.9. Since the 16-ply thickness is 2 X 10-3m, the comparable 

components are identical; i.e., 

A 1 1 = 56.6 X 2 X 10-3 = 113 MN/m (6.139) 

Again, compare the D in Figure 6.9 with that for the symmetric angle­
ply laminate in Equation 5.114, we have identical components if we use 
the case m = infinity; i.e., the quasi-homogeneous, square symmetric 
laminate. The relation of Equation 6.106 is valid. So this antisymmetric 
laminate is pseudo-homogeneous. We can see that the compliance of 
this laminate is also pseudo-homogeneous. 

As the number of ply groups increase, the compliance components 
will tend toward the value for quasi-homogeneous laminate, like the 
symmetric angle-ply. For comparison between the antisymmetric and 
symmetric angle-ply laminates, we show the ·change in the compliance 
components as functions of m in Table 6.13. The compliance for 
symmetric laminates is taken from Equation 5.115 et al. 

table 6.13

selected compliance components of T300/5208 symmetric and antisymmetric 
angle-ply laminates 

m d11 =d22 d66 d16 =d26 a11 = a:22 1316 =1326 <'>11 =022 

(kNmf1 (kNmf1 (kNmf1 (GN/mf1 (MNf1 (kNmf1 

2* 23.71 -17.33 71.13 

4 66.03 58.35 -18.95 20.40 - 4.09 61.21 

8 60.83 36.25 - 5.88 20.05 - 1.81 60.17 

16 60.09 33.12 - 2.68 19.98 - 0.87 59.95 

00 59.85 32.19 0 19.95 0 59.85 

*The m = 2 case is not possible for the symmetric angle-ply laminate. 

Only the 16 and 26 components reduce rapidly as m increases, all 
other compliance components vary only modestly. With these com­

pliance components, we can determine the strain distribution of an 
antisymmetric laminate subjected to a simple stress resultant or 

moment. 

• Ni *O

€0 
1 

€0 
2 

k6 

• M6 =FO 

€0 
1 

€0 
2 

k6 

= 

= 

= 

= 

= 
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a11N1 

0'.21N1 (6.140) 

f316Nl 

/31 6M6 

f326M6 (6.141) 

f,66M6 

Because of the special coupling of this laminate, the same strains (in­
plane and curvature components) are induced by totally different 
applied stresses. 

An opportunity for reducing or eliminating twisting curvature is 
possible when both stress resultant and twisting movement are present. 
This can occur in a rotor or a fan blade when centrifugal stress and 
aerodynamic twisting occur simultaneous. The conditions for zero 
twisting curvature is: 

(6.142) 

The compliance components in Equation 6.142 can be manipulated 
within certain limits set by the properties of the constituent ply or plies 
in the case of hybrids. Since the sign of the coupling compliance is 
controllable, while the flexural compliance is not, the curvature in 
Equation 6.142 is controllable. The case of zero curvature is one special 
case. This is a unique characteristic of composite materials. It is also 
important to realize that it is the ratio, not the absolute values, that 
can eliminate the curvature. 
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•M1 =1=O

k, = 8, iM1 

k2 
= 82 ,M, (6.143) 

€0 
= 136 ,MI 6 

• N6 =l=O

k1 {36 I N6 

k2 = {36 2N6 (6.144) 

Again, an opportunity existing for reduction or elimination of in­
plane shecl,r strain is possible, such that 

(6.145) 

All these highly coupled relations for antisymmetric laminates offer 
unique opportunities in the design of laminates. Under combined 
stresses, certain mode of deformation can be reduced or controlled. 
Strain distribution can also be altered for more favorable conditions. 
Composite materials are more than a highly competitive replacement of 
conventional materials. Composite materials can perform functions not 
possible with conventional materials. The opportunities available for 
new functions abound and need to be fully exploited. 

6. the.parallel axis theorem

Up to this point, the midplane of a laminate is the z = 0 plane. The 
parallel axis theorem deals with the general case where the midplane of 

a laminate or a ply is not on the z = 0 plane. This theorem is analogous

to that for the moment of inertia of a rigid body. 
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In Figure 6.10 we show the relation between the laminate with 

respect to the z = 0 plane. The relation between z and z' is: 

z = h/2 
z = O 
z=-h/2 

z = z' -d, or

z' = z + d 

z,z' 

�
d+h/2 

- �z'=d-h/2 

d 

z'=O 

Figure 6.10 Relation between laminate 

midplane and the transferred plane. 

(6.146) 

The stress resultant and moments in the new, transferred plane can 
be defined: 

N'.
= 

f d+h/2 Id I 

' 
d-h/2

ai z 

From Equation 6.146 we can say 

·when
dz'= dz 

z' = d±h/2 

z = ±h/2 

(6.147) 

(6.148) 
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J 
d+h/2 

M'. = . a';z'dz' 
1 d-h /2

=f 

(6.149) 

(6.150) 

Note that the moment must be corrected by the transfer distanced. We 
can now derive the transfer of stress-strain relation of a general 
laminate. 

f d+h/2 

N'. = a';dz' 
1 d-h /2

f d+h/2 I I I I = Q;/€? + z ki)dz 
d-h /2

I 

= [ f h 12 
Q;;dz] €?1 + [ f h 12 

Q;;(z + d)dz] k1
-h /2 1 

-h /2 

Similarly 

f d+h/2 
M'. = a';z'dz' 

1 

d-h /2

(6.151) 

(6.152) 

(6.153) 

(6.154) 

f d+h/2 
QI I I I I = Q;/€. + z k;)z dz 

d-h /2 l 
(continued) 

Therefore 
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(6.155) 
(concluded) 

(6.156) 

This is the parallel axis theorem. The stiffness of a general laminate can be 
transferred by a distance d along the z-axis. 

First, the theorem can be used to generate the stiffness of general 

laminates. This approach is particularly suited for odd number of plies. 
Let the in-plane and flexural modulus of each ply or ply group be the 
basic building block. The coupling modulus is zero for homogeneous 

ply. The transfer distanced will be the location of the midplane of each 
ply. 

p 

b=-p

p 

b=-p 

b=-p

d2 A (b) 
b ij 

(6.157) 

- I 
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where 1
p =-(n-1)

2 
n = odd 

= total number of plies 
b = the ordinal number of plies, -p ¾ b ¾ p 

If all plies in a laminate have the same ply thickness, the transfer 
distance can be replaced by the ordinal number of the plies. Let 

bA (b)ij 
b=-p 

(6.158) 

n;i = L D\� > + h� 
b=-p b=-p 

We can modify Figure 6.2 to show the new ordinal number bin Figure 
6.11. The formulation by the parallel axis theorem is best suited for 
odd number of plies. In Figure 6.11 the ordinal number t is for even 
number of plies; that for b, odd number. With the new ordinal number 
we can establish a table analogous to that for the old ordinal number t 
in Tables 5.4 and 6.6. The result of the new ordinal number for odd 
number of plies is shown in Table 6.14. 

T n/2-lh above 

h • 

I 2nd above 
MIO Isl above 

P. 'LANE Isl below 
2nd below 

l n/2-lh below 

Even Plies 

. 

. 

nt= 
� - , n-1/2-th above l- b= n2

-t =P
!=7-1 : 

t=2 -b=22nd above 
t= I 
t=0--
1=-I 
t=-2 

/sf above 
0-th or Mid Ply

!st below
2nd below 

- b=I
-b=O-
-b=-1
-b=-2

1=1-; 
I 

n-, 
t=-

./1._- I n-l/2-th below -b= -y =-P

Odd Plies 

Figure 6.11 Ordinal numbers for laminates with even number of plies on the left; 
odd number, on the right. 

table 6.14 
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numerical values of b's for calculation of stiffness of general laminates 

Ply order b T.b bl
T.b2 

8th above 8 36 64 204 

7th above 7 28 49 140 

6th above 6 21 36 91 

5th above 5 15 25 55 

4th above 4 10 16 30 

3rd above 3 6 9 14 

2nd above 2 3 4 5 

mid-

plane 

1st above 1 1 1 
mid-

0th or mid ply--- 0 0 o--o 
plane 

1st below -1 - 1 1 1 

2nd below -2 - 3 4 5 

3rd below -3 - 6 9 14 

4th below -4 -10 16 30 

5th below -5 -15 25 55 

6th below -{, -21 36 91 

7th below -7 -28 49 140 

8th below 
--s

--�36 64 204 

We will now show how general laminates with odd plies can be 
calculated. For each ply we have 

Aii = 
fzoQij

Bii 
= 0 (6.159) 

h3 
Dii = 1; Qii 

The stiffness of a general laminate with the same ply material and ply 
thickness is merely the sum of the contribution of each ply using the 
parallel axis theorem. We have 

- I 
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b=-p 

• 

p 
= h2

I: bQ�?)
0 I} 

b=-p 

n;i 
= 

b[p 

D�?) 
I} 

h3 

L Q�f) + hi L b2 Q�?)= 0 

12 I/ 

h3 
p 

0 

L [ I +12b2 ] Q\?)
12 I/ 

b=-p 

• 

(6.160) 

(6.161) 

(6.162) 
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Let us  first compute a one-ply laminate using Equations 
6.150-6.157. First, from Table 6.14 for 0-th ply, 

b = 0 

We have 

A;i = hoQii

B;i = 0

h3 

n;i = I; Qii

Now if we have a three-ply laminate (b =-1,0,1) ofT300/5208 with 
a stacking sequence of (0/90/0] T• we have from Table 6.14, 

(6.163) 

where the coefficient 13 comes from [I+ l 2b2 ] for b = ±I . 
If we have a 24-ply laminate with the same stacking sequence; i.e., 

[0s/90s/0sl T 

we can immediately compute the stiffness by the equivalent thickness 
of 8h

0 
and apply the appropriate scaling to the values in Equation 

6.163, we will have: 

A� 1 
= 8(46.73) = 373.8 MN/m 

B� 1 = 0 (6.164) 
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If the ply materials are different from ply to ply, due to either ply 
orientations or use of multiple materials (hybrids), the proper modulus 
should be substituted into Equation 6.158 for each modulus designated 
by superscript b.

The use of the parallex axis theorem for the calculation of the stiffness of a 
general laminate is convenient when: 

• There are odd number of plies,
• All plies have the same thickness, and
• Plies can be of different materials (hybrids).

If any one condition is not satisfied, the simple factors in Table 6.14 
cannot be used without modifications. 

The parallel axis theorem is also useful in determining the relative 
importance of stacking sequence in a laminate in a built-up structure, 
such as the cap or flange of a "T" section or the skin of a fuselage. 
Repeating Equation 6.156 here: 

If we introduce the following stiffness components: 

A;j = A;/h 

Bij = 2B;i/h2 

D
i
� = 12D;/h3 

(6.165) 

(6.166) 

All the normalized components of stiffness will have the same physical 
unit as the stiffness of a homogeneous material; i.e., Pa. The parallel 
axis theorem in Equation 6.165 can be expressed in terms of the 
normalized components. 

A :1'.'
I/ 

B�.' 
I/ 

D:1'.'
If 

=At
* *d= B;j + 2A;j h

= .. + B---+ 12A-· -D* 
12 

*d *[d]
2 

If ,, h ,, h 

(6.167) 
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Let us examine a cross-ply laminate of T300/5208, in Figure 5.11. 

From Table 4.6, and Equation 4.48: 

(6.168) 
= 96.08 GPa 

From Table 5. 7, and Equation 5.64 form= 4 

(6.169) 
= 160.37 GPa 

Because of symmetry 

(6.170) 

Substituting these values into Equation 6.167 for the normalized flex­
ural modulus, we have 

Df; = 160+12X96[:]2 

= 160 + 1152 [{]
2 

(6.171) 

Note the numerical values as a function of the normalized transfer 
distance. We have seen here that the sensitivity of the transfer distance 
to the flexural modulus. If the number of ply groups change, as we have 
seen in Equation 5.66 et al., only the first term of Equation 6.171 is 
affected. So the effect of ply groups or stacking sequence in general will 
be negligible when the transfer distance is increased beyond the laminate 
thickness. Similar effect of a sandwich core can be expected. The 
second term in Equation 6.171 becomes dominant. It determines the 
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table 6.15
normalized flexural modulus as function of transfer 

distance for T300/5208 cross-ply laminates 

D*'
11 

12Af 1 [!] 
2 

h n*'
11 

0 160 00 

0.1 171 14.88 

1 1,312 1.138 

10 115,360 l.001,38 

100 11,520,160 1.000,013,8 

stiffness of a thin shell. The first term is still important because it
controls the local stability of the shell. Results are listed in Table 6.15.

Now let us apply the example above to an unsymmetric construction
such as the cross-ply laminate in Equation 6.90 and Figure 6.4(a). The
stiffness of this laminate is shown in Figure 6.5. We can compute the
following normalized components where the 16-ply laminate with a
thickness of 2 mm: 

1 71 2
= -43 GPa for m = 2

m (2 X 10-3)2

nr 1 = 64 12
3 

= 96 GPa
(2 X 10- )3 

Substituting these values into Equation 6.166, we have

A*'
1 I 96 GPa

d 
B*' l 1 = -43 + 192-

h 

D*'
1 I 

= 96 - 513: + 1152 [:]
2 

(6.172)

(6.173)

j 
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When the transfer distance is ten times the. laminate thickness, the
coupling and flexural modulus components in the I-direction become
insensitive (within 5 percent variation) to the stacking sequence. For
thin shells, where radius is at least ten times the thickness, the stacking
sequence, sandwich core and midplane symmetry contribute to the
local behavior of the shell only. They have little effect on the gross
behavior of the shell.

The numerical results in Table 6.16 are plotted in Figure 6.12, where
we show the normalized flexural modulus as a function of the normal­
ized transfer distance. Both the symmetric and unsymmetric cross-ply
laminates are shown. As the transfer distance increases beyond ten, the
two curves merge into one; i.e., the last term in Equations 6.171 and
6.173 become dominant.

table 6.16
the normalized flexural modulus for unsymmetric laminates as functions of 

transfer distance 

n*' n*'
11 11 

n*' 192� Df� (Unsymm) 11s{fJ
2

h 11 

h 

0 -43 00 96 00 

0.1 -23.8 -1.239 56.22 4.880 

1 149 .776 753 .638 

10 1877 .977 110,166 .9563 

100 19157 .9977 11,468,796 .9955 

The unsymmetric laminate curve falls below that of the symmetric
laminate. Thus asymmetry reduces the flexural modulus. From Equa­
tion 6.167, we can derive the condition for eliminating the coupling
matrix by proper transfer of the axis. 

B'!'.' 
I} 

d
-

h 

* *d
= 0 = B ij + 2A ii h

Bi*1 
=-

2Ai*1 

(6.174)
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Substituting this into the flexural modulus, 

or substituting Equation 6.166 into this, 

� 

/0 

.I I 

.!!. 
" 

/0 

Figure 6.12 Normalized flexural modulus as a function of 
normalized transfer distance. 

(6.175) 

(6.176) 

100 

I 
I 
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Note that the transferred stiffness is always less than the original. This 
equation only applies to one component at a: time. For example, we 
have cylindrical bending along the 2-axis, instead of the 1-axis, 

Using the data in Equation 6.1 73, 

d 43 
- =-=.223
h 192 

m2 

A22 

Df � = 38.89 GPa or 

h3 
D'11 = 38.89-= 25.92 Nm 

12 

(6.177) 

(6.178) 

(6.179) 

This is lower than original untransferred modulus of 37.7 Nm shown in 
Equation 6.136. In fact, at this transfer distance, the flexural modulus 
reaches a minimum. This is shown in Figure 6.12. Also at this transfer 
distance, the laminate behaves like a symmetric laminate with a reduced 
flexural modulus. The buckling equation for isotropic material can be 
directly applied for this unsymmetric laminate under cylindrical 
bending . 

We have seen the use of the parallel axis theorem for a variety of 
problems. The theorem is helpful in separating the local from the global 
behavior of a built-up structure. It is also helpful in identifying the 
effects of stacking sequence, the midplane symmetry, and the contribu­
tion of a sandwich core. The theorem illustrates the difference between 
the absolute or unnormalized modulus and the normalized modulus. In 
the design and sizing of structures, the laminate modulus as a function 
of the number of plies, ply_ orientations, and transfer distance must be 
optimally selected. The absolute modulus is preferred. The parallel axis 
theorem is easy to use if plies are added to an existing laminate without 
performing the integration or summation from the bottom to the top 
plies. The marginal return of an additional ply can be quickly 
established. 
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7. transformation of the coupling stiffness and compliance

It is useful to establish the transformation of the coupling stiffness and 
compliance matrix. With such relations we can show the unsymmetric 
cross-ply laminate and the ±45 degrees antisymmetric laminate are 
related to each other through a rotation of 45 degrees. With the trans­
formation relations we can calculate the stiffness and compliance of 
our unsymmetric laminate for any angle of rigid body rotation. For our 
cross-ply laminates listed in Table 6. 5, we have for [ 0/90] T the follow­
ing components: 

(6.180) 

From the transformation equation in Table A.7, we can immediately 
write down the transformed coupling modulus for [0/90-0] T as 
follows: 

B2 6 = .!_s; 1 sin20 = -42.8sin202 

(6.181) 

The transformation of the coupling modulus is very simple and 
follows the trigonometric functions of the double angle. When 0 equals 
0 degree, the 16 and 26 components are zero. When 0 equals -45 
degrees, the 11 and 22 components are zero while the 16 and 26 reach 
maximum. Components related to the 12 and 66 components are 
identically zero for all angles. The nonzero transformed coupling 
modulus are shown in Figure 6.13. 

From Table A. 7 we can write the transformation equation for the 
antisymmetric laminate [-45 /45] will have the following components 
for the coupling modulus based on m=2 in Figure 6.9: 

(6.182) 
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From this laminate orientation, the coupling modulus of a laminate 
[ 0-4 5 I 0 + 4 5 ] r can be obtained from the following nonzero 
components: 

B 1 1 = -B2 2 = -4(m3 n+mn3 )B; 6 

= -2B; 6 sin20 = -85. 7sin20 (6.183) 

The result of this transformation is identical to that shown in Figure 
6. 13 except the origin for our laminate should be displaced to the left
by 45 degrees. The transformation relation of this equation is more 
useful than that in Equation 6.181 because the starting point is from the 
symmetry axis of the antisymmetric laminates. The matrix inversion 
can be reduced from one 6 X 6 to two 3 X 3. Thus we can use the 
transformation equation to generate the modulus and compliance of a 
cross-ply laminate in Figure 6.5 by rotating the results of an anti­
symmetric laminate in Figure 6.9. 

We need equations comparable to that of 6.183 for our coupling 
compliance matrix /3. This can be derived from Table A. IO because f3 is 
symmetric for the case of a bidirectional laminate. The result is: 

/3� 6 = 13; 6 = -11.3 (MNr1 

/3 I I = -(3,. 2 = -2(m3 n-mn3 )/3; 6 

= -13; 6 sin20 = l 7.3sin20
(6. I 84) 

/3 1 6 = /32 6 = (m4 -n4 ){3; 6 

13; 6 cos20 = -1 7 .3cos20

/3, 2 = /36 6 = 0 

From the transformation relations above, we can see that a rotation of 
+45 degrees will result in the laminate [ 0/90] T for which the nonzero
components are:

(6. I 85) 
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This agrees with the result in Figure 6.5 for the unsymmetric cross-ply. 
We have thus established an expedient method of generating the 

stiffness and compliance of antisymmetric laminates with arbitrary 
laminates orientations. The entire antisymmetric laminate can undergo 
arbitrary rigid body rotation. The process described above requires the 
inversion of two 3 X 3 instead of one 6 X 6 matrix provided {j is 
symmetric. 

-40

-BO

Teo 
2mm 

l 

90 fl -60 -30

-40

-80

30 60 90 fl

t t t t t 
(0/90] /45/-45]/90/0j (-45/45 } (0/90} {45/-45/(90/0} 

Figure 6.13 Transformation of the coupling modulus of a T300/5208 
cross-ply laminate: [0s/90s l T· 

8. conclusions

Index notation is almost a prerequisite in the study of general lam­
inates. A highly coupled behavior is available and provides opportuni­
ties for design and fabrication not possible with the conventional mate­
rial. The governing stress-strain relations are as conceptually simple as 
the symmetric laminates. The stiffness of a general laminate can be 
easily manipulated to provide any degree of in-plane versus flexural 
coupling. In many cases, only the coupling matrix B is sensitive to the 
asymmetry of stacking sequence. Every component of the compliance, 
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on the other hand, is sensitive to the asymmetric stacking sequence of 
the laminate. 

The parallel axis theorem is a useful tool for calculating the modulus 
of any laminate. Constructions of hybrid, built-up structures can be 
readily expressed in terms of its modulus. The sensitivity of stacking 
sequence, asymmetry, transfer distances and changes of materials or 
finite widths can all be assessed in a straight-forward manner. 

A structure such as a wing can have symmetric but different lam­
inates of the top and bottom covers. The wing will be asymmetric. With 
a properly chosen transfer distance like that is in Equation 6.1 74, the 
wing will bend like a simple beam with a reduced flexural stiffness. 
Numerous combinations of symmetric and asymmetric constructions, 
including hybrids, can be utilized to create novel responses of built-up 
structures. The local versus global stiffness is easy to differentiate. The 
use of prestress can shift failure modes to more advantageous combina­
tions and locations. The essence of composite materials lies in the 
judicious choice of: 

• Ply materials (Qii), ... )
• Local property (A;;, B;;, D;;)
• Global or structural property (Af;, Bf;, Df;)

In addition, the process of curing and environmental effects (to be 
presented in Chapter 8) can be chosen to provide the most desirable 
prestress. We should not penalize composite materials by eliminating 
anisotropy and asymmetry. We should instead improve our analytical 
capability so we can do justice to the effective use of composite 
materials. We should not limit ourselves to ten constants and make the 
remaining 26 zero. We should try to take advantage of all 36 constants. 

. I 
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9. homework problems

a. Discuss the pros and cons of calculating the modulus of general
laminates of the following approaches:
( l )  Direct integration of Equation 6.68 or summation of Equation

6.69.
(2) Separation of geometric factors from material constants in Equa­

tion 6. 79 et al.
(3) The parallel axis theorem in Section 6.

b. What is the consequence of not having the minus sign in the defini­
tion of curvature in Equation 5.9 on the modulus of a general
laminate? What is the consequence if the factor of 2 for the twisting
curvature is left out in Equation 5.9?

c. Calculate the components in Table 6.4 which is a partial inversion of
the modulus of Table 6.3 for T300/5208 cross-ply laminates shown
in Figure 6.4. Is the stiffness matrix symmetric, asymmetric or anti­
symmetric?

d. What is the stiffness of a circular cylinder with unsymmetric cross­
ply wall of the last problem subjected to uniaxial extension along its
axis? How does it compare with a symmetric laminate of the same
total thickness? Compare the ply stress in the cylindrical wall of the
symmetric and unsymmetric construction.

e. Calculate the partially inverted modulus in Table 6.4 for a
T300/5208 antisymmetric laminate shown in Figure 6.8. The result
can be applied to a thin wall tube under an applied torque. What is
the resulting ply stress and strain? How do they compare with those
for a symmetric laminate of the same wall thickness?

f. Calculate unsymmetric ±30-degree angle-ply laminates of T300/ 5208
for various ply groups similar to those in Figure 6.8. How can we
write down the results for the same laminates for ±60-degree?

g. Write a general relation for the stiffness of a built-up structure with
piece-wise variable widths. How can hybrid (variable materials) be
introduced?

h. How are engineering constants defined for general laminates? Show
the bending and torsional stiffness of T300/5208 ±45-degree anti­
symmetric laminates as functions of ply groups. Compare the results
with the symmetric laminates in Figure 5.1 7 .

i. General laminates offer the widest choice of coupling between

I 

properties of general laminates 275 

various behavioral variables. Centrifugal force (in-plane stress re­
sultant), for example, can be used to reduce or eliminate the twisting 
curvature shown in Equation 6.142. Centrifugal force can also be 
used to reduce or eliminate bending curvature; see Table 6.9. What 
are the conditions for eliminating bending and twisting curvature 
simultaneously by centrifugal force? Can T300/5208 satisfy the 
conditions? 

- I 
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nomenclature 

A;j,Bii•Dii = Stiffness of symmetric or unsymmetric laminates; units vary 
A7j ,B;j,D't = Normalized stiffness; Pa 
aii = In-plane compliance of a symmetric laminate, in N"1

; iJ = 

b 

dii 
d 

h 
ho 
k; 
Mi 
m 

n 

N; 
Qij 
t 

ViA,B,D 

U; 

l,2,6 

= Width of a beam or 
= The ordinal number of plies in a laminate with odd plies 
= Flexural compliance of a symmetric laminate 
= Transfer distance from the reference axis in the parallel 

axis theorem 
= Total thickness of laminate, in m 
= Unit ply thickness, in m 
= Curvature, in m-1; i = 1,2,6 
= Moment, in Nm-1; i = 1,2,6 
= Total number of ply groups 
= Total number of plies in a laminate 
= Stress resultant, in Nm- 1 ; i = l ,2,6 
= Stiffness of a unidirectional composite; i,j = 1,2,6 or x,y,s 

= The ordinal number of plies in a laminate with even plies 
= Geometric factors for the in-plane, coupling and flexural 

moduli of an unsymmetric laminate; i = 1 to 4 
= Linear combinations of the stiffness of a unidirectional 

composite; i = 1 to 5 
= Compliance of unsymmetric laminates; units vary 
= Normalized compliance; Pa - 1 

= Stress components in a lamina 
= Total and in-plane strain in a laminated composite 

J 
l 

• l

chapter 7 
strength of composite materials 

The strength of unidirectional and multidirectional composites can be 
described by quadratic interaction failure criteria in stress and strain 
space. The first ply failure envelope in stress space can determine the 
optimum strength. This envelope in strain space can be approximated 
by a right ellipsoid in the p-q-r strain space. This envelope becomes 
independent of ply orientations; The design of composite laminates 
becomes analogous to that for conventional materials. 

277 
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1. failure criteria

For the determination of strength of any material it is the usual prac­
tice to estimate the stress at the time and location when failure occurs. 
In the case of conventional materials· we need only to determine the 
maximum tensile, compressive, or shear stress and can then make some 
observation about the failure and the failure mechanism. This process-is 
relatively straightforward because isotropic materials have no preferen­
tial orientation and usually one strength constant will suffice. The iso­
tropic material is essentially a one-dimensional or one-constant 
material. The Young's modulus for stiffness will suffice because 
Poisson's ratio is taken to be about 0.3, and the uniaxial tensile strength 
will also suffice because the shear strength is taken to be about 50 to 60 
percent of the tensile. 

· For composite materials, however, the one-constant approach for
stiffness or for strength is no longer adequate. We saw earlier that four 
elastic constants were needed for the stiffness. We will see later in this 
chapter six constants for the strength of unidirectional composites are 
needed. The number of constants however do not introduce conceptual 
difficulty. We know that unidirectional composites have highly direc­
tionally dependent strengths. The longitudinal strength can be twenty 
times that of the transverse and shear strengths. So for any state of 
applied stress, all three stress components must be examined before a 
judgment on the cause of failure can be made. We cannot say quickly 
the specific stress component that is responsible for the failure. Prob­
ably all three components are responsible. The effect of combined 
stresses must be systematically determined and can be regarded as a 
way of life for composites. 

The determination of strength using failure criteria is based on the_ 
assumption that the material is homogeneous (properties do not vary 
from point to point) and its strength can be experimentally measured 
with simple tests. Failure criteria provide t:tie analytic relation for the 
strength under combined stresses. There is another approach of strength 
using fracture mechanics. A material is assumed to contain flaws. The 
dominant flaw based on its size, shape and location determines the 
strength when its growth cannot be stopped. In this chapter we will 
interpret strength using failure criteria. 

For composite materials, we need a failure criterion for the unidirec:­
tional plies. The strength of a laminated composite will be based on the 
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strength of the individual plies within a laminate. We would expect 
successive ply failures as the applied load to a laminate increases. We 
will have the first ply failure (FPF) to be followed by other ply failures 
until the last ply failure which would be the ultimate failure of the 
laminate. The ply stress and ply strain calculations for symmetric and 
general laminates are intended for strength determination. This is the 
subject of this chapter. 

There are two popular approaches for failure criteria of unidirec­
tional composites. They are all based on the on-axis stress or strain as 
the basic variable with different tensile and compressive strengths. 

a. the maximum stress and strain criteria

(7. l) 

Failure occurs when one of the equalities is met. Using the linear 
relation we can express the equation above in the following max­
imum strain criterion: 

e* � 
X X' 

X 

Ex 
or 

Ex

€* � 
y Y' 

(7.2) or-y 
Ey Ey 

€* � 
s 

s 

Es 

Failure occurs when one of the equalities is met. These two cri­
teria are not the same. One of the homework problems in Chapte�r 
l showed the difference. Only when Poisson's ratio of the uni­
directional material is zero, the criteria become identical. Con­
ceptually they are similar. Each component of stress or strain has
its own criterion and is not affected by the other components.
There is no interaction.
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b. the quadratic interaction criterion

(7.3) 

This can be expressed in strain components. 

(7.4) 

where the F's and G's are strength parameters analogous to the 
constants in Equations 7.1 and 7.2. Failure occurs when either 
equation is met. 

We will choose the quadratic criterion in this book. It is simple, 
versatile and analytic. Established rules on transformation, invariance 
and symmetry are applicable. It includes interaction among the stress or 
strain components analogous to the von Mises criterion for isotropic 
materials. Many have used variations of this failure criterion. 

Failure criteria serve important functions in the design and sizing of 
composite laminates. They should provide a convenient framework or 
model for mathematical operations. The framework should remain the 
same for different definitions of failures, such as the ultimate strength, 
the proportional limit, yielding, endurance limit, or a working stress 
based on design or reliability considerations. The criteria are not in­
tended to explain the mechanisms of failure. Failures in composite 
materials involve many modes; viz., fiber failures, matrix failures, inter­
facial failures, delamination, and buckling. Furthermore, the various 
modes interact and can occur concurrently and sequentially. Failure 
analysis based on some post-mortem examination without due consider­
ation of the dynamic process of failure can be misleading. 

2. quadratic failure criterion

Equation 7.3 can be expanded for the case of two-dimensional stress, or 
iJ = l ,2,6. 

(7.5) 

f 

I 

strength of composite materials 281 

Since our unidirectional composite is in its orthotropic axes, as shown 
in Figure 7.1, the strength should be unaffected by the direction or sign 
of the shear stress component. If shear stress is reversed, the strength 
should remain the same. Sign reversal for the normal stress components, 
say from tensile to compressive, is expected to have a significant effect 
on the strength of our composite. Thus, all terms in Equation 7.5 that 
contain linear or first-degree shear stress must be deleted from the 
equation. There are three such terms: 

(7.6) 

where i,j = x,y,s is applied to Equation 7.3. 
Since the stress components are jn general not zero, the only way to 

ensure that the terms above vanish is for 

Figure 7.1 On-axis positive and negative 
shears. They should have no effect on 
the strength of unidirectional composites. 
Coupling between shear and normal com­
ponents cannot exist in this orthotropic 
orientation. 

(7.7) 

With the removal of the three terms, Equation 7.5 can be simplified. 

(7.8) 

There are four quadratic strength parameters analogous to the four 
independent components of modulus. There are two linear strength 
parameters as a result of the difference in tensile and compressive 
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strengths. There is no counterpart of this in the modulus because tensile 
and compressive moduli are assumed to be equal. 

Of the six material constants or strength parameters, five can be 
measured by performing simple tests. 

• Longitudinal Tensile and Compressive Tests

Let X = Longitudinal tensile strength 
X' = Longitudinal compressive strength 

These strengths are measured by uniaxial tests shown in Figure 7.2. 
Substituting the measured strength into Equation 7.8, 

o; 

Figure 7.2 Uniaxial longitudinal tensile and 
compressive tests. 

(7.9) 

(7.10) 

I 

I 
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We have two equations for two unknowns from which we can get 

XX' 

X X' 

• Transverse Tensile and Compressive Tests

Let Y = Transverse tensile strength 
Y' = Transverse compressive strength 

(7 .11) 

Using the same approach as the longitudinal tests and by reason of 
symmetry, we know 

y Y'

• Longitudinal Shear Test

Let S = Longitudinal shear strength

Substituting this value into the shear stress in Equation 7.8,

I 
F =-

ss 
s2 

(7.12) 

(7. I 3) 

We have obtained five of the six coefficients in our failure criterion of 
Equation 7.8. The one remaining term is related to the interaction 
between the two normal stress components. The only way that this 
coefficient can be measured is for both normal stress components to be 
nonzero; this requires a combined stress or biaxial test. This experi­
mental task unfortunately is not as easy to perform as the simple uni­
axial or shear test. 

Although the exact value for the interaction term is indeterminate at 
this time, there are upper and lower bounds imposed on this value 
based on a geometric consideration. A conic section or quadratic curves 
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can go from an ellipse to parallel lines, and to hyperbola depending on 
the value of the interaction term, the coefficient of the product of two 
normal stress components in Equation 7.8. The criterion that dictates 
which branch of the quadratic curve it belongs to is based on the value 
of the following discriminant: 

> 0 for ellipse

= 0 for parallel lines 

< 0 for hyperbola 

(7.14) 

In order to insure that the failure criterion represents a closed curve in 
the plane of the normal stress components, this discriminant is con­
strained by the value shown for the ellipse in the equation above. The 
curve has to be closed in order to avoid infinite strength. 

If we introduce a dimensionless or normalized interaction term, 

(7 .15) 

The range of values of the discriminant in Equation 7.14 can now be 
expressed by the range of values of the normalized interaction term: 

-1 < FJ
y 

< l for ellipse

F; 
Y 

= ± 1 for parallel lines 

Fi y < -1, l < F; y for hyperbola

(7.16) 

We can rearrange Equation 7.8 in terms of the following dimension­
less parameters: 

Y = v'fi;;ay (7.17) 
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In addition, we also need the following dimensionless parameters: 

F*y 

X'-X 

VXX' 

Y'-Y 
VIT' 

with these parameters, Equation 7.8 becomes: 

x2 
+ 2F* xy + y2 

+ z2 
+ F*x + F*y = l xy X y 

(7.18) 

(7.19) 

This equation represents a family of ellipses. In the z = 0 plane the loci 
for all materials can be described by ellipses with the following 
features: 

• We can find the x-axis intercepts by letting y = 0, in Equation
7.19, we will have

x2 
+ F; x - 1 = 0 

+ 1

From Equation 7 .18, we can show by direct substitution 

x= /X 
✓ x'

• Similarly, we can show the y-axis intercepts as

y

= ff,. -ff 

(7.20) 

(7.21) 

• F;Y will govern both the slenderness ratio and the inclination of
the major axis; i.e., +45 degrees for negative F;

y
, and -45 degrees
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for positive FJ
y

. In place of the biaxial stress test to determine the 
sixth strength parameter, we assume that the orthotropic failure 
criterion in Equation 7.19 is a generalization of the von Mises 
criterion 

F* = -l xy 2 

where the von Mises criterion can be expressed as follows: 

x2 -xy + y2 
= 1 

(7.22) 

(7.23) 

• The linear terms will determine the displacements of the center.

The stress failure criterion in Equation 7.8 for unidirectional com­
posites can be expressed in strain-space. This is often more convenient 
than that in stress-space because strain distribution across the thickness 
of a laminate is idealized as constant or at most a linear function of the 
z-axis. Thus strain at any ply in a laminate can be readily determined
from which the failure criterion in strain-space can be applied directly. 
This is the motivation for expressing the criterion in strain rather than 
stress-space. Since our material is assumed to be linearly elastic 
up to failure, the one-to-one correspondence between strain and stress 
is always valid. For each stress there is one and only one corresponding 
strain. 

In order to derive Equation 7.4 from 7.3, we need only to substitute 
the stress components by strain components using the on-axis stress­
strain equation listed in Table 1.6, thus 

(7.24) 

We can define 

(7.25) 

So that the failure criterion in strain space is 

(7.26) 
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We can expand this equation and invoke symmetry as we did in Equa­
tion 7. 7, to have: 

(7.27) 

where 

Gxx = Fxx O;x + 2Fxy 0xx 0xy + Fyy O;y 

Gxy 
= Fxx Oxx Oxy + Fxy lQxx Oyy + Q;

y ] + Fyy 0xy 0yy 

(7.28) 

This equation is already dimensionless. Such representation has many 
advantages, which include the generality of the equation in all physical 
dimensions. These material constants have the same values in SI and 
English units. 

The strength of a unidirectional composite for a given state of strain 
can be obtained directly from solving the quadratic equation of Equa­
tion 7.27. As was the case of the strength in Equation 7.8, there will be 
two roots: one for the given strain components; the other for the same 
strain components but with the signs reversed. 

3. sample strength data

We will use unidirectionaLT300/5208 composite as an example for the 
strength calculation. The measured strength data of this material are: 

X = Longitudinal tensile = 1500 MPa 

X' Longitudinal compressive = 1500 MPa 

y = Transverse tensile = 40 MPa (7.29) 

Y' = Transverse compressive = 246 MPa 

s = Longitudinal shear = 68 MPa 
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From Equations 7.11 et al., we can calculate the following: 

Fyy 
101.6 (GPar2 

Fss = 216.2 (GPar2 

FY 
20.93 (GPar 1 

From Equations 7.15 and 7.22 

= -3.360 (GPar2 

(7.30) 

(7.31) 

In stress-space, the allowable strength curves for each material is 
anchored by four points representing the four measured strengths. 
These points are the intercepts of the stress axes shown as solid dots in 
Figure 7.3. It is necessary that all failure envelopes must pass through 
these intercepts or focal points. 

o;, 
I 

-4 -3 -2 -/ I 2 

a_;, GPo

-/ 

Figure 7 .3 The four intercepts of the strength curve in zero shear 
stress plane for T300/5208. The assumed strength curve drawn 
through these points is based on the generalized von Mises 
criterion. 

I 

t 

i 
I 
! 
I 
i 
1 

I 
I 
I 
I 
I 
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An allowable strength curve is drawn through these four points with an 
assumed interaction term of the generalized von Mises criterion in 
Equation 7.22. Note the high degree of directionality in strength. The 
curve is highly elongated. As we have seen earlier, uniaxial stress 
induces biaxial strain because of the Poisson's effect. This is shown in 
Figure I. 9. The four fixed points in strain-space that correspond to the 
intercepts in Figure 7.3 can be calculated from the on-axis stress-strain 
relation. 

• when ax
= X,

• when a =-X'
X ' 

• when a
y = Y,

X/Ex = 8.287 X 10-3 

E/ = E
y(a) 

= Y/E
y = 3.883 X 10-3 

• when a =-Y' 
y , 

e/ = Ey(a) = -Y'/E
y = -23.88 X 10-3 

These focal points are shown in Figure 7.4. 

(7.32) 

(7.33) 

(7.34) 

(7.35) 

Now we will plot the allowable strength curves in strain-space for 
various values of the normalized interaction term. The family of 
strength curves in strain-space is shown in Figure 7.5 using the four 
focal points in Figure 7.4. The generalized von Mises criterion is equal 
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Figure 7.4 Four focal points of the allowable strength curve in strain• 
space, with zero shear strain. The material is T300/5208. 

to the curve with FI
Y 

= -½. With this assumed interaction term, the 
failure criteria in strain space (Equation 7.27) can be calculated with 
Equation 7.28 and the modulus of the material. For T300/5208, we 
have 

Gxx 
= .444 X (181.8)2 - 2 X 3.36 X 181.8 X 2.89 + 101.6 X 2.89)2

(7.36) 
= 12004 

Similarly 

G
yy 

= 10680 

Gx = 60.64 = 216.5 

G
ss 

= 11117 

(7.37) 

0 
c:i 
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Figure 7 .S Allowable strength curves in strain-space for various values of 
the interaction term for T300/S208. These curves show much less direc­
tionality than comparable curves in stress-space. 

Strength data for other unidirectional composites can be found in 
Table 7.1. The elastic constants of the same materials are listed in 
Chapter 1. The strength parameters in stress and strain space can be cal­
culated following the example for T300/5208 in Equations 7.30 and 
7.36. The normalized interaction t¢rm is assumed to be - ½. We call 
the criterion with this value the generalized von Mises criterion. The 
strength parameters for the stress and strain space representations are 
listed in Tables 7.2 and 7.3, respectively. As a comparison a high 
strength aluminum is listed in the same tables. The stiffness of this 
metal is based on the Young's modulus of 69 GPa and Poisson's ratio 
of 0.3, same as those shown in Equation 1.33. 
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table 7.1 

typical strengths of unidirectional composites in MPa o·

0 

Long. Long. Trans. Trans. 8 

tens. comp. tens. comp. Shear 3 '0 
X x' y Y' s 

0 

Type Material v, "' 
;:;: 
CD 

3 
T300/5208 Graphite ' 

/Epoxy 0.70 1500 1500 40 246 68 iii" 

8(4)/5505 Boron 
/Epoxy 0.50 1260 2500 61 202 67 

AS/3501 Graphite 
/Epoxy 0.66 1447 1447 51.7 206 93 

Scotchply Glass 
1002 /Epoxy 0.45 1062 610 31 118 72 

Kevlar 49 Aramid 
/Epoxy /Epoxy 0.60 1400 235 12 53 34 

Aluminum 400 400 400 400 230 

table 7.2 

strength parameters in stress space for unidirectional composites* 

Fxx Fyy 
Fxy

F,,, Fx F
Y 

Type Material (GPar2 (GPaf2 (GPaf2 (GPaf
2 (GPaf1 (GPar1 

-

T300/5208 Graphite 
/Epoxy .444 101.6 - 3.36 216.2 0 20.93 

8(4)/5505 Boron 
/Epoxy .3i7 81.15 - 2.53 222.7' .393 11.44 

"' 

AS/3501 Graphite 
/Epoxy .476 93.48 - 3.33 115.4 0 14.50 

Scotch ply Glass 0 

1002 /Epoxy 1.543 273.3 -10.27 192.9 - .697 23.78 
3 

Kevlar 49 Aramid 0 
"' 

/Epoxy /Epoxy 3.039 1572 -34.56 865.0 -3.541 64.46 
CD 

3 

Aluminum 6.25 6.25 - 3.125 18.90 0 0 
iii" 

*Based on generalized von Mises criterion: F;
y 

= - ½. "' 
co 
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4. transformation equations for strength parameters

We have dealt with the on-axis orientation of the failure criterion. We

can establish the off-axis criterion by establishing the transformation

equations. We have the following:

• On-axis: stress, and the quadratic and linear strength parameters:

• Off-axis: stress, and the quadratic and linear strength parameters:

We wish to express the off-axis strength in terms of the on-axis

strength. This is precisely the same as the transformation of compliance

in Table 3.8 . 
We can derive this by substituting the stress transformation equation

into the on-axis failure criterion in Equation 7.8. The stress transforma­

tion is used to replace the on-axis stress to an off-axis stress; i.e.,

Table 2.1. 

+ F [-mna + mna + (m2 - n2 )a ] 2 

ss 1 2 6 

+Fy
(n2 a 1 +m2 a2 -2mna6 ) = I

Rearranging the above, we have

[m4 Fxx + n4 Fyy +
 2m2 n2 Fxy + m2 n2 Fss la 1

2 

(7.38) 
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Matching this with Equation 7.5, we have 

(7.39) 

The quadratic strength parameter transforms exactly like the com­
pliance in Table 3.8; the linear, the same as strain in Table 2.5. The 
only difference is that Table 2.5 transforms from the off-axis to the 
on-axis. The transforma�ion of F's and those of all other material prop­
erties are from the on-axis to the off-axis. The sign of the sine functions 
must change. The results are listed in Tables 7.4(a) and (b), where 
matrix multiplication is implied. 

table 7.4(a) 
transformation of quadratic strength parameters in stress space 

in power functions 

F,, 

F22 

F,2 

F,;6 

F,6 

F26 

Fxx Fyy F,,y Fss 

m4 n4 2m2 n2 m2 n2 

n4 m4 2m2 n2 -m2 n2 

m2 n2 m2n2 m4 +n4 -m2 n2

4m2 n2 4m2 n2 -8m2 n2 (m2-n2)2 

2m'n -2mn' 2(mn'-m'n) mn'-m'n

2mn' -2m'n 2(m'n-mn') m'n -mn'

m = cos 6, n = sin 6 

table 7.4(b) 
transformation of linear strength parameters in 

stress space in power functions 

Fx Fj, 

F, m2 n2 

Fz n2 m2 

� 2mn - 2mn 

m = cos 6, n = sin 6 
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Similarly we can derive the same equations in terms of multiple angle 
functions. These are shown in Tables 7.5(a) and (b). 

table 7.5(a) 
transformation of quadratic strength parameters 

in stress space in multiple angle functions 

I U2 U:, 

F11 u, cos26 cos46 

F22 u, -cos26 cos4t9 

F,2 U4 
-cos46

F66 Us -4cos46 

F" sin2t9 2sin 46

F211 sin 26 -2sin 46 

where the U's are defined like those for the compliance in Equation 
3. 56. The Fii 

shall replace the Sii
•

table 7.5(b) 
transformation of linear strength parameters 

in stress space in multiple angle functions 

p f/ 

F, I cos2tl 

Fi I -cos2tl

F. 2sin2tl 

We can derive the transformation equations for the strength param­
eters in strain space by substituting the transformed strain components 
into the failure criterion in Equation 7.27. The results are shown in 
Table 7.6 for the power functions formulation and Table 7.7 for the 
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multiple angle functions. The quadratic parameters transform like the 
stiffness components; the linear parameters, the stress components. 

table 7.6(a) 
transformation of quadratic strength parameters in strain space 

in power functions 

G,, 

Gzz 

G,z 

G66 
G,6 
G26 

Gxx Gyy Gxy Gss 

m4 n4 2m2n2 4m 2n2 

n,. m4 2m2n2 4mZn2 

m2n2 m2n2 m,.+n,. -4m2n2 

m 2n2 m 2n2 -2m2n2 (mz -nz/2 

m:Sn -mn:s mn:s -m:sn 2(mn:S -m:Sn/ 

mn:, -m:,n m:,n-mn:, 2 ( m:,n-mn:,J 

m=cosl1, n= sinl1 

table 7.6(b) 
transformation of linear strength parameters in 
strain space in power functions 

· Gx Gy 

G, mz nz 

Gz nz mz 

G6 mn -mn 

table 7. 7(a) 
transformation of quadratic strength parameters 
in strain space in multiple angle functions 

I U
z u., 

G,, u, cos211 cos411 

G22 u, - cos211 cos411 

G,z u
,. - cos411

G66 u� - cos411 

G,,; f sin 211 sin 411

G26 -f sin211 -sin 411

where the U's are similar to those for the stiffness in Equation 3.15. 

I 
t 
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table 7.7(b) 
transformation of linear strength parameters in 
strain space in multiple angle functions 

p q 

G, I cos29 

Gz I -cos29

G, sin29 

We can easily determine the off-axis strength of unidirectional com­
posites by using the transformation relations of the strength param­
eters. The failure criterion in stress space is 

(7.40) 

where the F's are of the off-axis orientation. The simplest case is the 
uniaxial tensile and compressive strengths of an off-axis unidirectional 
composite. The failure criterion above is reduced to: 

F 1 1 Oi + FI a 1 - l = 0 (7.41) 

Using the power function formulation of the transformation equation 
in Tables 7.4(a) and (b) respectively, we have 

= m
2 F + n2 F X y 

where m = cos0, n = sin0.

(7.42) 

There are two roots in the solution of Equation 7.41 corresponding 
to the tensile and compressive strengths. 
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The off-axis shear strength is simply the roots of: 

(7.43) 
where F =4m2 m2 (F +F )-8m2 n 2 F +(m2-n2 )2 F 

66 xx yy xy ss 

F6 = 2mn (Fx - F
y
)

Using the strength data in Table 7.2 we can predict the off-axis 
uniaxial strengths of AS/350 I when 0 is 45 degrees 

F11 = ..!.(.476 + 93.48- 2 X 3.33 + 115.4)
4 

= ¼(202.7) = 50.2 (GPar2 

Solving for the roots: 

50.2 X 10- 1 s o; + 7.25 X 10-9 
01 - I = 0 

0 1 = -72.2 ± ✓ (72.2)2 
+ 19920 = -72.2 ± 158

= 86, -230 MPa

(7.44) 

(7.45) 

(7.46) 

(7.4 7) 

Repeating the same calculation for different ply orientation, we arrive 
at the solid lines in Figure 7.6. Available data are shown as circles.* 

The normalized interaction term is taken to be -½ for the calcula­
tion above. This is an assumption. If we use the maximum and mini­
mum value of I and -1, the limits imposed by ellipses, we have 
respectively 

Fxy 
= ±6.66 (GPar2 

F1 1 = 55.6, 49.0 (GPa)-2 

*Provided by R. Y. Kim, University of Dayton Research Institute
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Substituting these values into Equation 7.46 in place of 50.2 and solv­
ing the quadratic equations, we will have two sets of roots: 

For Fi
y 

= I, 0 1 = 83.9, -214 MPa 

Fi
y 

=-I, a 1 = 86.9, -234 MPa 

The predicted off-axis uniaxial strengths are not sensitive to the value 
of the interaction term. At 45 degrees the contribution of this term to 
the transformed F is the greatest; see Equation 7.42. As the angle 
moves away from 45 degrees the interaction term has even less effect. 
Conversely, the uniaxial off-axis test cannot be used to compare or 
validate failure criteria. Other combined stress state which the off-axis 
test cannot produce would be more discriminating. 

1500· 

1000 

500 

60 ?5 90 
6 

-500

-1000

AS/350/ UN/0/RECTI0NAL 

-/500 

Figure 7 .6 Uniaxial tensile and compressive strengths of AS/3501 
graphite/epoxy composites as a function of fiber orientations. 
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5. strength/stress or strength ratios

Our failure criterion such as that in Equation 7.8 specifies the condition 
of failure. The strength parameters expressed in F's are fixed for a given 
material. The imposed stress components when substituted into the 
left-hand side of the failure criterion may produce any positive numer­
ical value. When this value equals unity, the failure criterion is satisfied; 
i.e., failure will occur under the given stress components. If the com­
ponents have greater values, the left-hand side of Equation 7 .8 exceeds 
unity. This is not physically possible. The material cannot sustain such 
combination of stress components. 

If the imposed stress is smaller, the left-hand side has a value less 
than unity. We conclude that failure has not occurred. Thus the failure 
criterion .like that in Equation 7.8 provides only a go-or-no-go criterion. 

We can increase the information given by the failure criterion if we 
use a different variable. We define this variable as the strength/stress 
ratio, or simply, strength ratio R:

(7.48) 

where stress or strain components without remarks are those applied 
or imposed; and subscript (a) or asterisk means the allowed or the 
ultimate stress or strain. Several features of this ratio should be 
mentioned.* 

• When applied stress or strain is zero, R = 00 • 

• When the stress or strain is safe, R > I.
• When the allowable or ultimate stress or strain is reached, R = 1.
• R cannot be less than unity which has no physical reality.

The conventional failure criterion is a fail-or-no-fail criterion. 
Strength ratios will not only define the upper bound where the allow­
able or ultimate exist (R = 1 ), but will also indicate the quantitative 
measures of the safety margin. If the ratio is two, it means that the 
applied stress can be doubled before failure occurs. 

Since we have assumed that our material is linearly elastic up to 
failure, the strength· ratio in stress is equal to that in strain. 

*The reciprocal of this is called stress ratio in some design handbooks of metallic struct\lres.

I 
l 
r 

- -- ---------
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We also assume proportional loading in Equation 7.48 that for each 
applied stress or strain, its unit vector remains fixed up to failure. This 

assumption is necessary to define a unique strength ratio from any 
starting point. 

The starting point of stress or strain application need not be the 
origin of the reference coordinate system. If our surface is a sphere, the 
starting point can be anywhere within the sphere. Moreover, there are 
many reasons for starting from points other than the center or origin. 
Besides, initial stress or strain, different tensile and compressive 
strengths, and different longitudinal and transverse strengths will all 
shift the starting point of stress and strain application. 

If the applied stress or strain is a unit vector, the resulting strength 
ratio value becomes the allowable. This is a convenient feature of this 
ratio from the standpoint of computation. 

We will try to illustrate the meaning of strength ratios with simple 
examples. Let us first use circles to represent the surfaces of constant 
strength ratios. The equation of this family of curves is: 

x2 + y2 
= l /R2

, or 

R2 
= I /(x2 

+ y2 ) 

where x, y = stress or strain components. 

From the definition of strength ratios in Equation 7.48, we know 

X(a) = Rx

Yea)
= Ry

Combining Equations 7.49 and 7.50, we have 

(7.49) 

(7.50) 

(7.51) 

(7.52) 

(7.53) 

The strength ratio becomes unity when the stress or strain is at its 
allowable level. The curves of Equation 7.49 are shown in Figure 7.7. 
We can make the following comments: 

- I 
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• This material is isotropic with equal
strengths in x and y directions. The
tensile and compressive strengths are
also equal.

• Proportional loading from the origin is
assumed. Each loading path follows a
radius. The strength ratio curves will
change if proportional loading is not
followed. This change will be dis­
cussed later in this chapter.Figure 7.7 Curves for con­

stant strength ratios for an 
idcali1.cd material. • The combined stress effect can cer­

tainly be different from a circle. In
fact, the von Mises criterion for plasticity in isotropic materials in 
nondimensional stress components is elliptical; see Equation 7.23. 

x 2 -xy+y2 =1/R2
, or (7.54) 

(7.55) 

Instead of concentric circles, we will have concentric ellipses. 
However, the strength ratio concept is equally applicable. The 
remarks on isotropy, equality in tension and compression, and -
proportional loading remain valid for the von Mises case. 

If our material has different tensile and compressive strengths but 
remains isotropic with circular combined stress effect, Equation 7.53 
must be modified as follows: 

(7.56) 

where d = one-half the difference between tensile and compressive 
strengths (positive d means higher compressive than tensile strength). 

Substituting Equation 7.51 and rearranging, we have 

(7.57) 

(x2 + y2 )R2 + 2d(x + y)R - (1 - 2d2 ) = 0 (7.58) 
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This family of circles is shown in Figure 7.8. The following features can 
be noted. 

y 

Figure 7 .8 Surfaces for constant 
strength ratios for an idealized 
isotropic material having differ­
ent tensile and compressive 
strengths. 

• The curves remain circular by the
assumption made in Equation 7.56.

• The radius is inversely proportional
to the square of the strength ratio.

• Proportional loading starts from the
origin of the x-y coordinates.

• The center of each strength ratio is
no longer fixed in one position.

• The circles are displaced by an
amount inversely proportional to
the strength ratio.

Another perturbation of the curves of 
constant strength ratio can come from 
initial stress. 

Let us assume that initial tensile stress 
components exist. Then, analogous to 
Equation 7.57, we have 

(7.59) 

Judging from this equation as compared with Equation 7.57, there is no 
qualitative difference between the two. The only difference is the dis­
placements of the centers of successive circles. The curves for Equation 
7.59 will look essentially the same as those in Figure 7.8. 

For our unidirectional composite, the failure criteria listed in Equa­
tions 7 .1 to 7.4 can be easily modified by introducing strength ratios 

defined in Equation 7.48. 

(7.61) 

Failure occurs when the allowed stress or strain on the left-hand side of 
Equation 7.61 is reached. Thus Equations 7.3 and 7.4 actually apply to 
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the allowable quantities, or 

Substituting Equation 7.61, 

or 

[F;iaiai
)R2 + [F;a;JR-1=0 

[G;iei
e

i
)R2 

+ [G;e;JR - l = 0 

aR2 + bR - 1 = 0 

(7.62) 

(7.63) 

Instead of solving for the stress or strain, we solve for the strength ratiQ. 
There are to conjugate roots, R and R: corresponding to the applied 
stress/strain vector going in opposite directions; i.e., 

R, R' = v(b/2a)2 + (1/a) ± (b/2a) (7.64) 
• Usually only R is needed, R' is useful for bending.

6. in-plane strength of laminates

• 

The in-plane strength of laminates is determined by examining the 
strength ratios of each ply orientation subjected to a given state of 
stress resultants. The ply with the lowest strength ratio will fail first. 
The state of stress resultant when this ply failure occurs is called 
the first-ply-failure state. The plies with higher strength ratios will 
fail later, when the externally applied stress is increased. This successive 
ply failure progresses until the last ply or ultimate failure occurs. The 
ply-by-ply examination can be expressed in Figure 7 .9 The relation be­
tween in-plane strain and the applied stress resultant is from Chapter 4: 

(7.65) 

Substituting this into Equation (7.62) for a ply with 0 orientation: 

[G<0 > e0 e<? JR2 + [G<0 > e<? JR - l = 0 ij i J ( 0) j I ( 0) (7.66) 

(7.67) 

(7.68) 
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where 

R
(o) 

= Strength ratio of the 0 ply orientation 
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Figure 7 .9 Ply-by-ply strength ratios of a laminate. For given 
laminate stress resultants or in-plane strains, ply strains can be 
calculated. Then the strength ratios can be readily determined. 
The lowest strength ratio ply is the first ply to fail. 

(7.69) 

The in-plane strength of a multidirectional laminate will have multi­
ple strength ratios; one set (R and R') for each ply orientation. The ply 
with the lowest ratio will be the first to fail, the FPF. Two factors 
control the ply failures in a laminate. First, the in-plane compliance a� 
This is a function of the ply volume fractions. The function is non­
linear; see Figures 4. 7 and 4.9. The specific ply orientation is the 
second factor. The H functions in Equation 7.69 are vector products of 
the transformed strength parameters G's of the ply and the in-plane 
compliance of the laminate. The H functions provide a direct link 
between (a) and (d) in Figure 7.9 for each ply. 
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The ply failure stress levels for T300/5208 cross-ply laminates based 
on the normalized stress resultant (N/h) are listed in Table 7.8. For 
each applied unit stress, the strength ratios are now equal to t�e ulti­
mate strengths. We list the strengths for the 0 and 90 degree pl�es. For
example, the first line in Table 7. 8 shows the case of hydrostatic stress _ 
applied to a [ 0/90] laminate. The tensile failure �ould occu� a� 302 
MP a, and compressive failure at 1960 MP a. Both phes would fail simul­
taneously. The first and last ply failures coincide. 

table 7.8 
selected ply failure stress of cross-ply laminates, in MPa 

Unit 

stress 0°degree ply 90-degree ply

Laminates vector R(o) R(O) R(9o) R(90) 

[0/90] (1,1,0) 302 1960 302 1960 

(1,0,0) 681 1107 373 2268 

(0,1,0) 373 2268 681 1107 

(1,-1,0) 856 351 351 ·�

[02 /90] (1,1,0) 240 1830 303 1334 

(1,0,0) 892 1413 485 2915 

(2,1,0) 208 1282 200 1360 

(1,-1,0) 941 260 389 597 

(0,1,0) 262 1602 476 785 

[0/902 ] (1,1,0) 303 1334 240 1830 
(1,0,0) 476 785 262 1602 

(1,2,0) 200 1360 208 1283 

(2, 1,0) 192 543 126 925 

[06/90] (1,1,0) 133 951 207 541 

(1,0,0) 1159 1691 614 3562 
(0,1,0) 135 829 244 407 

(1,-1,0) 675 135 300 276 

The second line in Table 7 .8 shows that under uniaxial tensile load, 
the 90-degree ply would fail at 3 73 MPa, and the 0-degree at 681 MPa . 
In compression, the first ply failure would be in the 0-degree ply at 
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1107 MPa, while the 90-degree will not fail until 2268 MPa. 
The complete failure envelopes for various cross-ply laminates are 

shown in stress space in Figure 7.10. The inner boundary or the over­
lapped area is the FPF locus; the outer boundary, the ultimate failure 
locus. 

-4 -3 -2 -I 2 

o;. GPo 

�, 

(0/905) 

1000 
-2000 

-1000 

-1000 

Figure 7 .10 Failure envelopes in normal stress resultant space for 
T300/5208 cross-ply laminates. A unidirectional composite (Figure 
7.3) is also shown to indicate the degree of change in ply failure 
envelopes within a laminate. The unit for the laminates is MPa. 
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If simultaneous failure of all plies is an optimum condition for a 
laminate design, it is possible to achieve it only in the first and third 
quadrants in the stress space. The envelopes do not coincide in the 
other quadrants. For hydrostatic stress, the [ 0 /90] would be the 
optimum. This is intuitively obvious. If the stress ratio is 2: 1 or the unit 
vector is (2,1,0), we see in Table 7.8 that the [02 /90] laminate.would 
be approximately optimum. A more exact ratio should be 2: I. I. We are 
within IO percent of the optimum if we use 2: I. Thus a simple-minded 
model of matching the ply ratio with the stress ratios is fairly good. 
This approach is called the netting analysis. But netting analysis does 
not cover the second and fourth quadrants. 

We can superpose all the laminates in Figure 7.10 and determine the 
optimum ply ratio for any stress ratio. We are restricting ourselves to 
the zero shear plane which is also the principal stress plane. This is done 
in Figure 7.11. This figure provides a quick estimate of the required 
number of plies and the ply ratio of a cross-ply laminate. 

For a hydrostatic tension (N1 = N2 = p) of 3.02 MN/m we know 
from Table 7.8 and Figure 7.11 that the [0/90] or ply ratio equal to 
unity would be the optimum. The laminate thickness required 

h = 3.02 = .01 m
302 

The number of plies 

h .01 80 r 
n 

= -ho - 125 X 10-6 
= p tes

The optirn urn laminate is [ 04 0 / 904 0 1 . 
Suppose we have 

(7.70) 

(7.71) 

(7.72) 

For [0/90] laminate the lower strength is the 90 degree ply from Table 
7.8. 

h 
3·51 =.01 m or 80 plies
351 

(7.73) 
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The laminate is the same as the above, or [·04 0 /904 0]. But, if we use 
[02 /90], the strength is now 389. 

h = �-:; = .00902 rn or approximately 72 plies (7.74) 

The optimum laminate should be [ 04 8 /902 4 ]. Note the significant 
difference between the two laminates. 

N /h 

1000 

(0/90.> 

(0/902) 

IMO) 

(02/90) 

(Oot9Q) --��-=-==----l-------1----4-_:,:..:..:....,_,N
1
/h,MPo 

Figure 7 .11 Maximum first ply failure envelope of T300/ 5208 cross-ply laminates. 
All 0 and all 90-degree unidirectional composites are not included. 
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The failure envelopes of multidirectional laminates can also be shown 
in strain space. This is obtained by using the strength parameters in 
strain space listed in Equation 7.37 for the T300/5208. Or we can use 
the parameters in Table 7.3 if we are interested in AS/3501. Substi� 
tuting the data in Equation 7.66 for the multidirectional laminate, 
we obtain the failure envelopes in strain space shown in Figure 7.12. 

-30 0 

-30

10 
-3�,/0 

Figure 7.12 Failure envelopes of 0 and 90 degree plies in cross-ply 
laminates of T300/5208. Ply ratios do not change the failure envelopes 
in strain space. 

The key feature of these envelopes is that they remain fixed for each 
ply orientation, independent of the ply ratios. This is true because the 
laminate compliance does not appear in the failure criterion in Equa­
tion 7.66. For each laminate, the loading path in strain space will vary. 
This was not the case for the stress space version of the failure criterion. 
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For different ply ratios, the externally applied loads will follow dif­
ferent loading paths in strain space. For uniaxial tension or compressive 
stresses, the resulting loading paths have slopes equal to their Poisson's 
ratios. This was shown in Figure . 7.4 for unidirectional composites 
T300/5208. For cross-ply laminates of various ply ratios, the loading 
paths as dictated by Poisson's ratios are shown in Figure 7.13. 

-30 [90] -20 -/0

/0 

-3 

�. /0 

20 

/90/ 
/0/909} 

0/90/ 
0

/20

Figure 7 .13 Loading paths for various ply ratios in cross-ply laminates of 
T300/5208. Loading is limited to uniaxial stresses. The slopes of the lines 
are therefore equal to the Poisson's ratio of particular laminates. 

We can then combine the loading paths in Figure 7. 13 with the 

failure surfaces in Figure 7.12. This is done in Figure 7.14. For each 
loading vector, there is also the reversed (unloading) vector which 
changes the sign for all the strain components. The strength ratio based 
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0/90. 

-30 [90}

90° 

Figure 7 .14 Superposed failure envelopes of plies in cross-ply lam­
inates ofT300/5208. This figure is the sum of Figures 7.12 and 7.13 . 

on strains will provide the numerical margin of safety; i.e., how much 
increase the strain can sustain before failure. 

The failure envelopes in strain or in-plane strain space in Figure 7. 14 
arc governed by Equation 7.66. Laminate compliance is not included in 
the equation. Only ply orientations appear through the strain param­
eters, the G's. For a bidirectional laminate, there are only two ply 
envelopes and their shape and position remain fixed independent of the 
ply ratios. The loading path in strain space will change as we change the 
ply ratio. Several common loading paths are shown in Figure 7.13. 

The failure envelopes of multidirectional laminates can be illustrated 
in a number of ways. Each representation has its own advantages and 
reveals one or more aspects of the interaction within a laminate. Only 
with a good understanding of the lamina-laminate relation can we use 
composite materials effectively. 
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The laminate will have the first ply failure in the ply with the lowest 
strength ratio. After the first ply failure, the laminate may be able to 
continue until all plies have failed. The calculation of the laminate 
behavior after the first ply failure is not easy to perform. The laminate 
compliance is increased, or laminate modulus is decreased. Internal 
damage is induced by the first ply failure. An iterative process is re­
quired to assess the successive ply failures. This process is not well 
defined and will not be covered here. If we assume that ply failures do 
not affect the laminate compliance, the ultimate strength of the lam­
inate can be determined from the highest strength ratio among the 
plies. This approximation is not unreasonable if all ply failures up to 
the ultimate strength of the laminate are limited to matrix failures and 
do not involve fiber failures. The loss of transverse stiffness of many 
unidirectional plies may not significantly affect the in-plane stiffness of 
the laminate. Figure 3.8 shows the change in the off-axis modulus of 
T300/5208 when transverse stiffness goes to zero. 

It is reasonable to assume that damage initiation and accumulation 
do not occur if a laminate is kept below the first ply failure level. This 
level is equivalent to the yield stress of conventional materials. It is a 
conservative criterion to design a laminate based on the FPF stress or 
strain. In the next section the FPF envelope can be approximated by 
simple geometric bodies in the strain space. A direct comparison of the 
strength capability between a multidirectional composite and other 
materials becomes possible. 

7. approximate first ply failure envelopes

The failure envelopes in strain space are independent of the ply orienta­
tions. We showed the T300/5208 [0

n
/90

m
] laminates in Figures 7.12 

and 7 .14. The loading paths in strain space, however, are sensitive to 
the ply ratios or stacking sequence. The laminate compliance enters 
into the determination of loading paths. Uniaxial loadings have slopes 
equal to the Poisson's ratio of the laminate. Several loading paths are 
shown in Figures 7.13 and 7.14. 

We show the failure envelopes of other ply orientations in Figure 
7.15. There is a first ply failure domain common to all ply orientations, 
independent of the stacking sequence of the laminate. In this plane 

(€ 1 - €2 ) the envelopes change shape and location as the ply orienta­
tion changes. They do not move like rigid bodies. 
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10 

Figure 7. JS Failure envelopes of T300/5208 off-axis plies in the normal 
strain space. 

We can repeat the representation of failure envelopes in the V2q -
v'2.r space, where the square root of two comes from the coor�inate 
transformation equations in Equation 2.38. We have previously 
defined: 

(7.75) 

I 
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For the case of 

the failure envelope of a 0-degree ply is shown in Figure 7.16. 

-3�. 10 

Figure 7.16 The failure envelope of a T300/5208 0-degree ply in 
- the q-r strain-space with zero p.

(7.76) 

As ply orientation changes, the failure envelopes in the q-r_space or the 
equivalent constant p space undergo rigid body rotations at an angular 
velocity of 20. The inner locus of the revolving failure envelope is the 
exact FPF envelope when we have infinite number of ply orientations. 
This envelope is conservative for finite number of orientations. For 
example, Figure 7.17 shows the margin of conservatism for a (0/30) 
laminate. 
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10 
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l 

Figure 7 .17 Difference between the actual and the approximate failure 
envelopes of a (0/30] laminate. 

The approximate FPF envelope is compared directly with the actual 
FPF envelope of this laminate. For most other laminates, this margin 
becomes much smaller. Figure 7.18 shows the rapid convergence 
toward the approximate first ply failure envelope with radius R for a 
laminate of [ 0/30/90). 

We can show the results above analytically by expressing the failure 
criterion in strain space in terms of p,q,r. * By direct substitution into 
the general (off-axis) failure criterion. 

*See reference by H. T. Hahn and S. W. Tsai, "Graphical Determination of Stiffness and Strength
of Composite Laminates," Journal of Composite Materials, Volume 8, pp. 160-177, 1974.
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Figure 7.18 The approximate first ply failure envelope of a tridirectional 
T300/5208 laminate. The envelope is a circle in the q-r space which is 
convenient analytically. 

We can substitute the transformation equations of the strength param­
eters in Table 7. 7, and move all invariant terms to the right-hand side of 
equation, we have 

4(U5 + U3)q'2 + 4(U5 - U3)r'2 + (4U2p + 2qc )q' 

= l _;. 2[(U1 + U4 )p2 
+ Pc Pl (7.78) 
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where the U's are the linear combinations the G's (not the modulus of 
unidirectional composites). The transformed q and r are defined in 
Table 2.14. They correspond to the result of a rigid body rotation with 
angular displacement 20 shown in Figures 7 .16 to 7 .18. Linear combina­
tions of the linear strength parameters are defined in Table 7. 7(b).

We can specialize the general equation of the failure envelope to 
special cases: 

• Let q' and r' be zero.

(7.79) 

where for T300/5208 in Table 7.3 

= 16546 
(7.80) 

= 277 

Solving for p, 

p = 3.05 X 10-3, -19.79 X 10-3 (7.81) 

These points are shown as P and P' in Figure 7 .15. They represent 
the hydrostatic strain capability of the laminate. They are in­
dependent of the ply orientation. 

• Let p and r' be zero.

(7.82) 

where 

= 28822 
(7.83) 

= -155.86
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Solving for q',

q' = 9.185 X 10-3
, -3.77 X 10- 3 

V2q' = 12.98 X 10-3, -5.34 X l 0-3
(7.84) 

These points are the incepts of the q-axis shown in Figure 7.16. 

• Let p and q' be zero.

where 

= 44471 

r' = ± 4.74 X 10-3 

V2r' = ± 6.70 X 10- 3 

(7.85) 

(7.86) 

(7.87) 

These points are the intercepts of the r-axis for the 0-degree ply. 
They are shown in Figure 7.16. 

From the calculations above we know that the approximate first ply 
failure envelope for T300/5208 is anchored by the two hydrostatic 
points, P and P' in Figure 7.15 et al. The radius R in the q-r space from 
Equation 7.84 is: 

R =0. X 3.77 X 10-3 = 5.34 X 10-3 (7.88) 

This simple description of the failure envelope is accurate for laminates 
with several ply orientations. This was shown in Figures 7 .16 to 7 .18. A 
direct comparison of a composite laminate with the conventional 
material is now possible. This is analogous to the quasi-isotropic con­
stants of a composite materials which represent the minimum stiffness 
capability. Our invariant representation of the failure envelope here is 
also the minimum capability in strength of our composite laminate. 
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This approximate FPF is conservative and is safe because damage initia­
tion and accumulation are not likely to occur. 

In Figure 7.19 a direct comparison between the approximate FPF of 
T300/5208 and the high strength aluminum listed in Table 7.3 is pre­
sented. The aluminum envelope is approximate, and is based on the 
ultimate strength and on tlfe von Mises failure criterion. The FPF 
envelope is closer to the conventional yielding than the ultimate. The 
weight advantage of the graphite-epoxy composite is not included ih 
the comparison in Figure 7.19. If yielding is used as the basis and the 
40 percent weight advantage is claimed, the resulting circles for this 
high strength aluminum will be very small. It is fair to say that the 
strength advantage of composite materials is greater than the stiffness 
advantage. 

-4 -2

,/2p 

ALUMINUM 
(ULTIMATE) 

./2q 

Figure 7 .19 Comparison of failure envelopes of T300/5208 with a high 
strength aluminum. The approximate first ply failure envelope is used for 
the composite material. The aluminum failure is based on the ultimate and 
the von Mises criterion. 
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Further approximations of the FPF envelope can be made if more 
simplification is needed. For example, the approximate FPF in Figure 
7.19 and 7.15 can be replaced by an ellipsoid with circular cross section 
in the q-r space. In place of the segmented FPF curves in the p-q plane, 
an elliptic cross section that inscribes or circumscribes the FPF curves 
can be found. This approximate FPF envelope will take the following 
form: 

(p -p )2 q2 + r2 

___ o_ +--- = ½ 
a2 

b2 
(7.89) 

where a, b are the semi-major axes of the ellipsoid, p
0 

the shift of the 
center of the ellipsoid from the origin. From Equations 7. 79 et al., we 
can derive the following relations: 

Po = 
Pc 

(7.90) 

a = (7.91) 

b,-, •• � min l- 4(U,q: U,) ± J [;,(u,q: U,J]

2 

+ 4(U, � u,J

(7.92) 

This approximate envelope can also be expressed by: 

(7.93) 

where Gii• Ci are the strength parameters for the approximate FPF.
Comparing Equation 7.89 and 7.93, we can show the following 
relations: 

(7.94) 
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a2 - b2
=--

4b2 a2 -Po 
2 

I 
- Po 

= G2 =----­a2 - Po 
2 

There are only three independent strength param�ters. 
Other simplifications are possible, such as makmg 

or 
a = b = b0 

Po = 0

(7.95) 

(7.96) 

(7.97) 

(7.98) 

(7.99) 

(7.100) 

in Equation 7.89. Instead of ellipsoid for the approximate FPF, we have

spheres. . 
When we have both conditions in Equations 7 .99 and 7 .100,

or 

where for T300/5208, 

P2 + q2 + ,2 = b�/2

€ 2 +e 2 +.!.e
6

2 =IY:.
1 2 

2 
0 

(7.101) 

(7.102) 

(7.103) 

This simple approach is preferred over the maximum strain criterion 
because the analytic foundation is preserved in Equati�n. 7.102. . The successive levels of approximation can be exphc1tly stated with­
out changing internal consistency. The invariant nature an� the ply 
orientation independence of various FPF envelopes �re r�tamed. �he
orientation dependency of the more complex relations m Equation 
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7.66 et al. can be replaced by approximate FPF envelopes. Direct com­
parisons among different composite materials and conventional mate­
rials are now possible. Laminate optimization and sizing can be carried 
out on a rational basis. The simplifications embodied in the approx­
imate FPF envelopes can lead to straightforward and analytically con­
sistent design procedure. To design for strength becomes as simple for 
composite materials as that for conventional materials. 

8. conclusions

The quadratic interaction failure criterion in stress and strain space is 
recommended for unidirectional and multidirectional composite mate­
rials. This approach is easy to use because the coefficients of the failure 
criterion are components of tensors. Established transformation equa­
tions and invariants can be used. Depending on the accuracy desired, 
several levels of simplifications can be achieved. An important facet of 
this approach is the resulting rigid body rotation of the failure envelope 
in the q-r strain space. The angular displacement of the rotation is 
precisely twice the ply orientation. The inner locus of the rotated 
failure envelope is a circle. Taking advantage of the rigid body rotation, 
this approximate FPF is invariant, independent of the ply orientation. 
The ultima!e failure of a laminate, on the other hand, cannot be readily 
reduced to an orientation independent representation. The approximate 
FPF envelope is conservative and provides a basis for simplified design 
and sizing procedure not possible with the exact FPF envelope. In the 
latter case, ply-by-ply orientation becomes necessary . 
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9. homework problems

a. What is the highest FPF stress of a T300/5208 cross-ply laminate
under uniaxial compression? At what ply ratio does the maximum
strength occur? For example, the FPF stress [06 /90] is 1691 MPa in.
Table 7.8. What is the physical explanation of this result above?

b. How do we calculate the exact intercept of approximate FPF on the
positive e 1 or e2 axis in Figure 7.19? Is it the same as the failure
strain listed in Equation 7.32?

c. What can we say about the validity and usefulness of the maximum
strain criterion in Equation 7.2?

d. What are the values of a, b and p
0 

in Equation 7.89 for T300/5208
assuming the ellipsoid would circumscribe the segmented FPF in
Figure 7 .15; i.e., passing through P and P'? Is this envelope con­
servative? What are the values of Gii

?
e. How can the approximate FPF in Problem d be represented in the

stress-resultant space? Compare the result with all the exact FPF
envelopes in Figure 7.10.

f. Show failure envelopes in stress and strain space of Kevlar 49 com­
posite materials listed in Tables 7.2 and 7.3. What are the effects of
the low longitudinal compressive strength on the approximate FPF
envelopes?

nomenclature 

Ex, Ey, Es =

Fii• Fi = 

Gij, Gi = 

G;j, G; = 

fl(8) fl(8) = 

ij ' i 

p,q 
= 

Rco)• R(o) =

s = 

U; = 

X,X' = 

Y, Y' = 

x,y,s 
O; = 

€; 
= 

ei• = 

V; = 

FPF = 
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Young's and shear moduli 
Strength parameters in stress space; i,j = x,y,x or 1,2,6 
Strength parameters in strain space 
First-ply-failure strength parameters in strain space 
Strength parameters of the 0-degree ply in a laminate 
Linear combinations of first rank strength parameters 
Strength ratios of the 0-degree ply 
Longitudinal-transverse shear strength 
Linear combinations of second rank strength parameters 
Longitudinal tensile and compressive strengths 
Transverse tensile and compressive strengths 
Normalized stress components 
Stress components; i = x,y,s or 1,2,6 
Strain components; i = x,y,s or 1,2,6 
Ultimate strains; i = x, y, s

Poisson's ratios; i = x,y 

First Ply Failure 
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chapter 8 
hygrothermal behavior 

Deformation is also possible upon change of temperature and upon 

absorption of moisture. The matrix material is much more susceptible 

to hygrothermal deformation than the fiber. The hygrothermal defor­

mation of a unidirectional composite is therefore much higher in the 

transverse direction than in the longitudinal direction. Such anisotropy 

in deformation results in the presence of residual stresses in composite 

laminates because the multidirectionality of fiber orientation prohibits 

free deformation. The temperature change and moisture absorption also 

change mechanical properties. Therefore, hygrothermal behavior affects 

not only dimensional stability but also safety of structures . 

329 
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1. heat conduction and moisture diffusion

Whereas the mechanical behavior is described by the stiffness or the 
compliance matrix in Chapter l ,  the heat conduction in the linear 
theory is described by the thermal conductivity matrix Ki.* Specif­
ically, the heat flux qr per unit area per unit time in the X; direction is 
related to the temperature gradient T,

i 
in the x

i 
direction by 

(8.1) 

Note that T is the temperature and T,i is its partial derivative with 
respect to x

i
. 

In the material symmetry axes of unidirectional composite, the only 
heat flux possible due to the temperature gradient T,; is qf. Therefore, 
Equation 8. l reduces to 

qf = -KI T,x

qJ = -KJ T,y (8.2) 

q'[ = -K'[ T,z

Furthermore, since unidirectional composites are isotropic in a plane 
normal to the fibers, i.e., they are transversely isotropic, the thermal 
conductivities KJ and K; are equal to each other, 

(8.3) 

Thus, only two independent thermal conductivities can describe the 
heat conduction behavior of a unidirectional composite. 

Equation 8.2 is valid only in the material symmetry axes. If a differ­
ent system of axes is chosen, it should be changed accordingly. We 
recall that the transformation of stress was obtained from the balance 
of forces. The transformation of heat flux, however, follows from the 
balance of energy. 

Consider an infinitesimal triangular element as shown in Figure 8.1. 

" *Regular notation, not contracted notation, is used here. Contracted notation cannot be applied 

to vectors. 
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y 

f 

\�', 
A t 8 • x

q,r 
'Y 

AB= dx, AC=dy, BC=dx
2 

m = cosll, n=sinll

Figure 8.1 Energy balance for an 
infinitesimal triangular element. All 
heat flux components shown are _ 
positive. The x 1 axis is normal to BC.

For convenience the thickness of the element is taken as unity. In the 
absence of any heat source or sink within the element, the total heat 
influx must be equal to the total heat efflux. That is, 

(8.4) 

Dividing both sides by dx2, and using m = cos8, n = sin8, we obtain 

(8.5) 

The equation for qf follows similarly as 

(8.6) 

Finally, since the rotation is around the z-axis, there is no change in q;; 
i.e., 

(8.7) 
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The transformation of the temperature gradient can be derived

similarly to that of the strain, from the chain rule of differentiation.

For example, 
ar 

= 
aT ax + ar oy 

OX1 ax ax, ay OX1 
(8.8) 

Noting that the x-y axes have been rotated from the x 1 -x2 axes through 
the angle -0, we rewrite Equation 8.8 as 

ar ar 
=-m--n 

ox oy 

The equations for aT/ax2 and oT/ox3 are as follows:

ar ar 
=-n+-m

aT 

ax oy 

oT 

OX3 oz 

(8.9) 

(8. 10) 

(8.11) 

With the transformation equations known for both heat flux and 
temperature gradient, we can now express the heat conductivities in the 
new coordinate system in terms of those in the material symmetry axes. 
To this end we first substitute Equation 8.2 into Equation 8.5 to obtain 

qT = -KT T m + KT T n
1 x •x Y 'Y 

(8.12) 

Solving Equation 8.9 and 8.10 for T,x and T,y and substituting the
resulting equations into Equation 8.12 leads to 

(8.13) 

Therefore, the heat conductivities K[ 1 and K[2 in the new coordinate 
system are given by 

(8.14) 
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A similar approach for qr leads to K[2 : 

KT
= n2 KT + m2 KT 

2 2 X · y (8. 15) 

Needless to say, K[
3 

is simply equal to K'[.
Equations 8.14 and 8.15 are the same as those for the stress if we 

equate Kfi , Kf 2 and K[
2 

to a1 , a2 and a6 , respectively. Mathemat­
ically, the stress, the strain and the heat conductivity are the same 
second-rank tensors although they represent physically different quan� 
tities. Thus, their transformation equations are the same. 

The foregoing equations for heat conduction are equally applicable 
to moisture diffusion. In the latter case, the heat flux qr is replaced by 
the moisture flux ql/, and the temperature graduent T,i by the moisture 
concentration gradient H,i• Here the moisture concentration H is 
defined by 

H 1. mass of moisture in .6.V
= 

1m 

l\V-+O .6.V 
(8. 16) 

Thus His a measure of the amount of moisture at a point. 
The relation between q7 and H,i is expressed in terms of the mois­

ture diffusion coefficient Kfj so that 

Because of the material 
composites reduces to 

where 

q11 = -Kif H. l If '/ 

symmetry, Equation

qlf 

q: 

l! 

KH 
z 

=-K8 H 
X •X 

=-KH H 
y ,y 

--K8 H 
z •z 

= KH 

y 

(8.17) 

8.17 for unidirectional 

(8. 18) 

(8. I 9) 

It goes without saying that the same reduction was possible for qr, see 
Equation 8.2. Furthermore, the transformation equations for qf, H,; 
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and K¾ are the same as those for q{, T,i and K{;, respectively. Note 
that the transformation equation for qf follows from the balance of 
mass whereas the balance of energy was used for qf. The physical 
dimensions of the hygrothermal variables introduced so far are listed in 
Table 8.1. 

table 8.1 
uniu of hygrothermal properties 

Temperature K Moisture concentration g/m3 

Temperature Moisture concentration 
gradient K/m gradient g/m4 

Heat flux W/m2 Moisture flux g/(m2 •s) 

Thermal Moisture diffusion 
conductivity W/(m·K) coefficient m2 /s 

Thermal Specific moisture 
diffusivity m2 /s concentration g/g 

Specific heat J/(g•K) 

Of particular interest in studying the hygrothermal behavior of com­
posites is the one-dimensional diffusion through the thickness, i.e., in 
the z direction. This is the situation when a thin laminate is subjected 
to a change in its environment, Figure 8.2. Suppose the initial tempera­
ture and moisture concentration are uniform throughout the laminate 
and are denoted by ri and H

0
, respectively. The environmental change 

is such that the temperature and moisture concentration at the surfaces 
are maintained at T 

00 
and H 

00, respectively. It is then necessary to 
determine the distributions of T and H through the thickness as time 
changes. 

The governing equation for Tis obtained from the balance of energy. 
Consider an infinitesimal element dz, Figure 8.2(b). The heat influx 
through the unit area of the left face is q; while the heat efflux 
through the right face is q; + aqf /az dz. On the other hand, the 
increase in the energy stored per unit time within the element is 
pC aT/at dz where C is the specific heat. Since there.is no heat source 

*Here TO is used to denote the initial temperature. However, in later sections TO represents the
stress-free temperature.
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New 
Environment 

New 
Environment 

t-----t-t--+---z 

dz 

(b) 

Figure 8.2 A thin laminate subjected to an environmental change. 

or sink, the balance of energy requires that 

i.e.,

ar =pC-dz 
at (8.20) 

( 8.21) 

where p is the mass density of the composite. Finally, substitution of 
Equation 8. 2 into Equation 8. 21 leads to 

(8.22) 

Furthermore, if Kf and pC are constant, Equation 8.22 can be 
reduced to 

(8.23) 

This is known as Fourier's equation. 
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The equation for moisture diffusion can be derived similarly from 
the balance of mass as 

(8.24) 

Again, if K1/ is constant, Equation 8.24 can be reduced to Fick's 
equation 

(8.25) 

A comparison of Equations 8.23 and 8.25 reveals that these equa­
tions are identical in form to each other, indicating the similarity of the 
underlying processes. The thermal diffusivity K; /(pC) and the moisture 
diffusion coefficient KH are a measure of the rate at which the temper­
ature and the moistu:e concentration respectively change within the 
material. In general, these parameters depend on the temperature and 
moisture concentration. However, over the range of temperature arid 
moisture concentration that prevails in typical applications of com­
posites, the thermal diffusivity is about 106 times greater than the 
moisture diffusion coefficient. Thus, the thermal diffusion takes place 
106 times faster than the moisture diffusion. As a result, the tempera­
ture will reach equilibrium long before the moisture concentration 
does. This observation allows one to solve Equation 8.25 separately 
from Equation 8.23. 

In the study of the hygrothermal behavior of composites the specific 
moisture concentration defined by 

C =H/p (8.26) 

is frequently used in lieu of H. Physically, c represents the amount of 
moisture as a fraction of the dry mass of composite, i.e. 

c = lim 
6V-+O 

mass of moisture in .6.V 
mass of dry composite of volume .6.. V 

(8.27)
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In terms of c Equation 8.25 becomes 

(8.28) 

where the subscript has been dropped off Kif for convenience. The 
appropriate boundary conditions are 

c = c
0 

for O < z < h at t ,,;;;; 0 
(8.29) 

c = c .. for z = 0 and hat t > 0 

Here h is the thickness of the laminate in Figure 8.2. The solution to 
Equations 8.28 and 8.29 is given by [ 1] 

00 c-co 
_ 1 � 4 L 1 . (2j+ 1)1rz - - -- sm ---- expc .. -c

0 
1r 2j+ 1 h j=O 

(8.30) 

Equation 8.30 is shown graphically in Figure 8.3 where the non­
dimensional time KH t/h2 has been used. Note that c eventually reaches 
c .. throughout the laminate. Therefore, c .. is also called the equilib­
rium (specific) moisture concentration. 

In a moisture absorption test the final moisture concentration c is 
always greater than the initial one c

0
• The converse is true in a moisture 

desorption test. However, Equation 8.30 is equally valid in either case. 
In actual experiments the sample frequently is weighed to determine 

the moisture content which is the total mass of the absorbed moisture 
divided by the dry weight of the sample. The moisture content is in fact 
the same as the average specific moisture concentration c defined by 

- 11h 
c =- · c dz

h d 

Substituting Equation 8.30 into Equation 8.31 and noting that 

c = c at t = 0
0 

c = c .. at t = oo 

(8.31) 

(8.32) 
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we obtain 

1 exp 
(2j+ I )2 

�/h 

Figure 8.3 Moisture profile as a function of time. The numbers 
are the values of the nondimensional time KH t/h2

• 

(8.33) 

Equation 8.33 is compared with experimental d�ta in Fig�ue 8.4. [ 2]

Since the moisture diffusion is through the thickness, 1t does not

depend on the type of laminate. Also, Equation 8.33 is applicable

regardless of the type of diffusion. 

For t sufficiently large Equation 8.33 can be approximated by the

first term in the series, 

C-C0 8 ( 1r2 KH t
) --- = 1-- exp ----

c -c 1r2 h2 
.. 0 

(8.34) 

On the other hand, for short times an approximation can be obtained 
from an alternate solution [ 1] as 

(8.35) 
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0.8 

C-Co o.6

Ca, -C
0 

0.4 

0.2 

GRAPHITE T- 300 

FIBER/TE 1034 

Figure 8.4 Experimental correlation of Equation 8.33 for 
graphite/epoxy laminates: unidirectional (o,•) and quasi­
isotropic (□,■). [2] Open and filled symbols represent 
absorption and desorption, respectively. 

Thus, the initial increase in moisture content is proportional to (t/h2 )½. 
Equations 8.34 and 8.35 are frequently used to determine KH from 

the measurements of moisture concentration. From Equation 8.34, the 
time t

½ 
for which (c-c

0 
)/(c

00 
-c

0
) = ½, is given by 

(8.36) 

Therefore, the diffusion coefficient is determined from the half-time of 
sorption process as 

(8.37) 

The applicability of Equation 8.35 becomes apparent if the moisture 
content is plotted as a function of v'7- A relationship between c and 
v'7 is schematically shown in Figure 8. 5. From the figure we choose, in 
the linear region, two moisture contents c1 and c2 corresponding to t 1
and t2, respectively. Substituting these values into Equation 8.35 and 
solving the resulting equations for KH , we can determine KH as 

(8.38) 
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-------------=-�-=-----; 

Co-.,_.__ _ _._ _______ _,

,./f ./2; 
SOUARE ROOT OF TIME 

Figure 8.5 Determination of diffusion 
coefficient. 

The equilibrium moisture concentration depends on the environ­ment. In humid air it is related to the relative humidity <f, in percent bya power law 
C =a (_.J!_)b 

00 100 (8.39)
where a and b are material constants. A set of data bearing such rela­tionship is shown in Figure 8.6. The moisture diffusion coefficient strongly depends on temperature.The relationship can be described by an equation of the form 

KH = KH exp (- Ea )
0 

RT 
(8.40)

where K:[ and Ea 
are the pre-exponential factor and activation energy,respectively, and R is the gas constant (=l.9 87 cal/(mole • K)). For thegraphite/epoxy composite of Figure 8.6 a relationship between KH and

T is shown in Figure 8. 7. [ 3] Typical hygrothermal properties of a graphite/epoxy composite aresummarized in Table 8.2. From the table we can find, for example, thatthe equilibrium moisture content at 100% relative humi<;iity is 1.8%. Atroom temperature (=2 3°C) the moisture diffusion coefficient is only2.6 2 X 10-s mm2 /s whereas the thermal diffusivity in the transversedirection is 0.45 mm2 /s. 

• 
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• 

AS/3501-5 
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R£LAT/V£ HUM/0/TY, ¢(%) 

Figure 8.6 Equilibrium moisture content as a function 
of relative humidity for AS/3501-5. (• [ 3), • [ 4), ■ [ 5] ). 
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Figure 8.7 Transverse diffusion coefficient as a function 
of temperature for AS/3501-5. (• [ 3], • [ 4), ■ [ 51). 
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table 8.2 

typical hygrothermal properties of unidirectional graphite/epoxy composite 

p C KT 
X 

g/cm
3 J/(g·K) W/(m•K) 

1.6 1.0 4.62 

a b KH 
0 

mm2 /s 

0,018 6.51 

To 

oc 

177 

KT=KTy z 
W/(m·K) 

0.72 

E
d
/R 

K 

5722 

ax 
(µm/m)/K 

0.02 

f3x 
m/m 

0 

2. stress-strain relations including hygrothermal strains

ay =a
z 

(µm/m)/K 

22.5 

f3y = f3z 
m/m 

0.44 

Just like any other material, compqsites deform when they absorb 
moisture or when the temperature changes. In the linear theory the 
resulting nonmechanical strains are simply added to the mechanical 
strains induced by the stress to obtain the total strain. In the following 
discussion of hygrothermoelastic constitutive relations, the temperature 
and the moisture concentration are uniform throughout the material 
volume. 

Consider a unidirectional composite in a reference state where tem­
perature is T

0 
and c = a; = 0. Next the composite is brought into a 

final state where temperature T is different from T
0 

and c =I= 0, a; =I= 0. 
Figure 8. 8 shows pictorially the two different states the composite is in. 

To determine the resulting strain we assume that the material is 
elastic; the response of the material does not depend on the history of 
the input but only on the initial and final states. Since the order of 
application of various changes is immaterial, we conceptually imagine 
that temperature is changed first, followed by moisture absorption. The 
application of stress is thus last, see Figure 8.8. Let us denote the 
st'rains induced by the temperature change and moisture absorption by 
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Actual 

1f1" 
-

c=O 
q=O 

\ 
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TI -el+_ e� 

� -------------+ 
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I' 
Oi 

Figure 8.8 Decomposition of total strain into thermal, swelling 
and mechanical strains . 

e{ and er, respectively. The mechanical strain due to a; is given by 
S

ii
a;, It should be noted that since the stress is applied at temperature T 

and moisture concentration c, S;;(T,c) is the compliance measured 
under such condition. Thus, it will be different from S;;(T

0
,c) which is 

measured at (T
0 

,c). By the same line of reasoning we see that efl is 
measured at (T,a; = 0) and eT at (c = 0, a; = 0). The final strain is the 
sum of the foregoing three types of strains: 

(8.41) 

Here the nonmechanical strain e; is the sum of ef and er, 

(8.42) 

Because of the transverse isotropy characteristic of unidirectional 
composites, not all components of the nonmechanical strain are in­
dependent in the material symmetry axes. Specifically, we have 
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(8.43) 

The resulting volumetric strain is 

(8.44) 

Thus, unlike isotropic materials, composites do not allow determination 
of nonmechanical linear strains from nonmechanical volumetric strain. 

In general, eT and er are nonlinear functions of T and c, respec­
tively. In the linear theory we are interested in, however, the thermal 
expansion coefficient <Xj and the swelling coefficient /3; can be used to 
calculate eT and er' respectively. That is, 

Thus, a.; has the dimension K- 1 whereas {3i has no dimension. Typical 
values of these coefficients for a graphite/epoxy are given in Table 8.2. 

Thermal expansion coefficients of other composites are listed in Table 
8.3. 

table 8.3 

thermal expansion coefficients of typical unidirec• 

tional composites 

ax ay 
Type (p.m/m)/K (p.m/m)/K 

T300/5208 0.02 22.5 
8(4)/5505 6.1 30.3 
AS/3501 -0.3 28.1 
Scotchply 1002 8.6 22.1 
Kevlar 49 /Epoxy --4.0 79.0 
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3. fabrication stresses

Determination of fabrication stresses in a composite laminate requires, 
above all, some understanding of the fabrication process involved. 
Therefore, we shall start this section with a brief description of a 
typical fabrication process of polymer matrix composites. 

Needless to say, fabrication of a composite laminate starts with fibers 
and a viscous matrix resin. The fibers are first impregnated with the 
resin and then wound with a backing sheet onto a mandrel in the form 
of a tape. The tape is then heated slightly to make the resin hard yet 
flexible enough to handle; the resin is B-staged. Thus the tape has all 
the fibers in the same direction and is called the prepreg. The prepreg is 
then cut into sheets and these sheets are laid up with fibers in various 
directions to make a laminate. The laminate is put in a vacuum bag to 
squeeze out the entrapped air and is slowly heated in an autoclave. As 
the temperature increases, the epoxy softens again and flows until a 
change in the internal structure starts to take place in the form of 
entanglement of polymer molecules, i.e., crosslinking occurs. As a 
result, free motion of polymer molecules is prohibited and the epoxy 
begins to harden. At this point, usually around 270°F, a pressure in the 
range of 80-100 psi is applied to drive out volatiles. The temperature is 
further increased to 350°F and maintained there for 1-2 hours to finish 
the cure. The temperature is then lowered to the room temperature and 
the cured laminate is taken out of the autoclave. The typical cure 
procedure just described is shown in Figure 8. 9 . 

As the crosslinking takes place, the epoxy shrinks, i.e., chemical 
shrinkage occurs. The resulting deformation of a unidirectional com­
posite in the transverse direction is much larger than in the longitudinal 
direction. Therefore, within the laminate the deformation of one ply is 
constrained by the other plies with different fiber orientations, and 
hence residual stresses are built up in each ply. However, since most 
crosslinking takes place at the highest temperature, called the cure tem­
perature, the epoxy can be still viscous enough to allow complete relax­
ation of the residual stresses. Thus, the cure temperature can be taken 
as the stress-free temperature. In reality, however, the stress-free tem­
perature will vary with the cure process employed because the property 
change during cure is very much time-dependent. Yet, the cure temper­
ature can serve as the stress-free temperature as long as almost all cure 
takes place at the cure temperature. 

Authorized User
Pencil
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Figure 8.9 A typical cure cycle for a graphite/epoxy 
composite. 

Now, consider, without loss of generality, a [0/90ls laminate being 
cooled from the cure temperature to room temperature. Suppose for a 
moment that the 0-degree plies and the 90-degree plie's can deform 
unconstrained by each other, Figure 8.10. For convenience, only one 
0-degree ply.and one 90-degree ply are shown in the figure. As tempera­
ture is lowered, the 0-degree ply deforms by ef while the 90-degree ply
undergoes a thermal strain eJ in the same direction. Si�ce ef _and eJ
are different from each other, there will be a geometncal mismatch 
between the 0-degree and 90-degree plies. In the actual { 0/90] s lam­
inate, however, such mismatch is not allowed. Therefore, residual 
stresses aR and � are internally exerted to the 0-degree and 90-degree 
plies, res;ectivel;, to bring about the geometrical compatibility. The 
final strain e'(T of the laminate is called the laminate curing strain and 
depends on e[ and eJ as well as on the elastic moduli. 

The procedure just described can be put in a more general form. To 
this end, the constitutive relation for ply, Equation 8.41, is first con-
verted to 

a; = Q;/e1-eJ) (8.46) 
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Figure 8.10 Build-up of residual stresses after fabrication. 
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Here the subscripts are associated with the laminate reference co­
ordinates. 

Following the same procedure as in Chapter 6, we obtain 

N; = Aiiei + B;1k1 -NT 
(8.47) 

M; = Biiei + D;1k,-MT 

where the laminate moduli A;1, B;1, Dii are defined in Chapter 6. The 
new quantities NT and MT are defined by 

(8.48) 

with the understanding that the integrations are from -h/2 to h/2. 
Since NT andMf have the-same dimensions as N; and M;, respectively, 
they are called the thermal stress resultant and thermal moment. 
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The curing in-plane strain ef T and curing curvature kT result from 
NT and MT in the absence of Ni and Mi and are given by 

I I 

e<JT = CJ1..Nr + {3--Mr 
1 I/ J 1/ I 

kr 
= 

(3.Nr + s .. Mr 
I I/ J I/ I 

(8.49) 

With efT and kT thus determined, Equation 8.47 can be rewritten as 

Ni = Au
(e1 -e1T) + Biki -kf) 

Mi = Bi/e1 - e1T) + Du
(ki - kf)

(8.50) 

Through the thickness of the laminate, the curing strain eT is 
given by 

er 
= 

e<? T 
+ z kr 

I I I 
(8.51) 

The residual stress af at z is then obtained from Equation 8.46 by 
substituting eT for ei . 

The corresponding residual strain ef is thus 

e� = er -eT 
I I I 

(8.52) 

(8.53) 

Si�ce er is the strain in the absence of N; and Mi, the strain� due 
to Ni and Mi is given by 

Thus Equation 8.46 can be written as 

ai = Qi/eJ' + ef) 

= Qiie'f + af 

(8.54) 

(8.55) 

Equation 8.55 indicates that the stress at a point within the laminate is 
the sum of the stress caused by Ni and Mi , and the residual stress. 
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4. residual stresses resulting from environmental change

In the preceding section the moisture concentration was zero. However, 
when a laminate absorbs moisture, the resulting swelling strain must be 
added to the thermal strain. The equations derived in the preceding 
section are still valid if we substitute ei for eT and if we use the stiffness 
at (T,c), Qu(T,c), instead of Qu(T,O). The superscript Tis now replaced 
by N and the equations for the nonmechanical in-plane strain and 
curvature are 

(8.56) 

where 

(8.57) 

M'/ 
= 

f Q;/T,c)e
izdz 

= 
f Qi/T,c)ef zdz + f Qu

(T, c)ef zdz 

The evaluation of the integrals in Equation 8.57 is much simpler if c 
is uniform throughout the thickness. As pointed out earlier, the temper­
ature reaches equilibrium almost instantaneously as compared to the 
moisture. In case of a uniform temperature and moisture distribution, 
both ef and ef1 are uniform in each ply and their variation from ply to 
ply. is �:mly due _to !he ch<1_nge of the fiber direction. Furthermore, a 
reduction of Equation 8.57 is possible if we use the equivalent stress 
that would produce the nonmechanical strain, 

(8.58) 

In the material symmetry axes of each ply, Equation 8.58 reduces to 

a'J = Qxy
ex + Qyy

e
y (8.59) 

a'; = 0 
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Note that Equation 8.59 does not change from ply to ply. For the ply 
with 0 orientation, see Figure 8.11, the components of the equivalent 
stress are given by (see Table 2.2) 

al'( = ,II + qi cos20 

a1j_ = ,II - qN cos20 

cJ: = qN sin20 

(8.60) 

where 

Figure 8.12 shQws ply-to-ply variations of the nonmechanical stresses in 
Equation 8.60. 

Figure 8.11 Coordinates 
for a typical ply orienta­
tion from the laminate 
axes 1-2. 

Substituting Equation 8.60 into Equation 
8.57, we have the nonmechanical stress re­
sultants as 

(8.62) 

Similarly, the nonmechanical moments can be 
written as 

MN 
= 

qN V1B 1 

MN 
= 

-qN V1B (8.63) 2 

MN 
= 

qN V3B 6 

z 

Figure 8.12 Ply-to-ply varia-
tions of nonmechanical stresses. 
The average stress is the non­
mechanical stress resultant. The 
laminate and the expansional 
strains are assumed to be sym­
metric; otherwise, nonmechanical 
moments will be induced . 
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The V's in Equations 8.62 and 8.63 
have been defined in Equations 6. 79 
through 6.82. Note that ,I' does not 
contribute at all to Mlj. 

For symmetric laminates, we have 

(8.64) 

If the expansion coefficients, Equa­
tion 8.45, can be m;;ed, the in-plane 
strain ef is given by 

(8.65) 

where 

(8.66) 

It is interesting to note that, even when the expansion coefficients of 
unidirectional composite are independent of T and c, such is not the 
case with the expansion coefficients of laminate, of/ and {3f, because Qij 

depends on T and c. When eT and efl are not proportional to (T-T
0

) 

and c, of/ and {3f in Equation 8.66 can be regarded as the instantaneous 
expansion coefficients because the change of Q;i with T and c can be 
neglected when compared with that of e;. 

Equations 8.56 and 8.57 show that ef = klj = 0 if e; = 0 for each 
ply. Since the residual stress is given by (see Equation 8.52) 

(8.67) 

where 
(8.68) 

the condition of zero nonmechanical strain e; = 0 in each constituent 
ply renders laminates free of residual stresses. 
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For graphite/epoxy laminates ax and f3x are negligible and hence, the
condition of zero residual stress is given by 

(8.69) 

Substituting Equations 8.39 and 8.45 into Equation 8.69, we derive a 
relation between (T-T

0
) and </> so that there is no residual stress. The 

result is 

T -T= a (_!P_)b f3y
0 100 Gy 

(8.70) 

Equation 8. 70 is shown graphically in Figure 8.13 for a graphite/epoxy 
laminate whose properties are given in Table 8.2. Note that the non� 
mechanical strain e

y 
is positive in the region to the right of the line and 

is negative to the left of the line. 

200 

...... /50

'--

� 
� 

/ 00 

� 
� 5,0 

ffi 
i,..: 

0 
0 20 40 60 80 /00 

RELATIVE HUMIOITY (%) 

Figure 8.13 Ambient temperature and relative 
humidity required for a graphite/epoxy composite 
to be free of residual stresses. 

The swelling coefficient /3; can also be obtained from a moisture 
absorption test of a unidirectional composite of thickness h subjected 
to a relative humidity </> on both sides. The resulting moisture dis­
tribution is given by Equation 8.30. The nonmechanical stress resultant
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due to swelling is obtained from Equation 8.57 as 

(8. 71) 

where the last equality follows from the assumption that Qii 
is in­

dependent of c. For the unidirectional composite, we have 

a-- = .!.Q-1 
11 h ii 

Therefore, the laminate swelling strain becomes 

e<?H 
= /3· c 

I I 

(8.72) 

(8.73) 

Thus /3i can be determined by measuring e1H and c during a moisture 
absorption test of a unidirectional composite. 

The nonmechanical curvature kl/ can be translated into the non­
mechanical out-of-plane displacement wV by using the curvature­
displacement relations, Equation 5.9. To this end we take the laminate 
in Figure 8. 2 to be a rectangular plate as shown in Figure 8.14. The 
dimensions a and b are much larger than the thickness h so that one­
dimensional diffusion through the thickness is still applicable. The solu­
tion to Equation 5.9 is 

(8.74) 

The integration constants b 1, b2 , b 3 are to be determined from the 
boundary conditions. For example, referring to Figure 8.14, we assume 
that the three conrners represented by (0,0), (a,0) and (0, b) rest on a 
flat surface; i.e., 

wN = 0 at (0,0), (a,0) and (0,b) (8.75) 
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To satisfy the boundary condition 8.75, the constants must be chosen 
as 

(8.76) 

Therefore, the final displacement is

,(8.77) 

Thus, the effect of hygrothermal deformation can be easily seen from 
the out-of-plane displacement wM .

Equation 8. 74 is valid as long as wM is not too large so that the 
assumptions of the linear theory are applicable. Thus this equation 
should be used only for those plates that do not have too large a 
width-to-thickness ratio. 

b 1----------, 

o�--------1.---x,
a

fol 

(b) 

Figure 8.14 Out-of-plane deflection of an 
unsymmetric, rectangular laminate. 
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5. unsymmetric cross-ply laminates

Unsymmetric cross-ply laminates are frequently used to show the effect 
of hygrothermal strains. Consider a rectangular [0/90] T laminate 
whose dimensions are the same as those in Figure 8. 14. Further, we 

- assume that the -temperature T and the moisture concentration c are
uniform throughout the laminate. The stiffnesses of this laminate have 
been derived in Sections 4.4 and 6.4. Thus, only nonmechanical stress 
resultants and moments need to be calculated in this section. 

The nonmechanical stress resultants follow from Equation 8.62 as 

(8. 78) 

where, since T and c are uniform, the nonmechanical strains are given 
by 

(8.79) 

Similarly, the nonmechanical moments are 

(8.80) 

M1: = 0

Therefore, there are only two unknowns e� and k'f which must 
satisfy (see Equations 8.4 7 and 6.100) 

N'j = (A 1 1 + A 1 2 ) e� + B 1 1 k'j 
(8.81) 
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The other strains and curvatures are 

e� = 0

(8.82) 

The solutions to Equation 8.81 are 

(8.83) 

Equation 8. 83 can also be expressed in terms of the ply stiffness using 
the results of Sections 4.4 and 6.4. Thus, the final equations are 

+ (Q�y 
+ 7Qxx Qyy 

-Qyy Qxy + Qxx Qxy 
-8Q;y) e

y 
1

(8.84) 

where 

(8.85) 

The residual stresses in the material symmetry axes of each ply are 
the same in the 0-degree and 90-degree plies. They are given by Equa­
tions 8.67 and 8.68 as 

af = Qxx (e� -ex + lzlk"{) + Qxy 
(e� -e

y 
-lzlk'{) 

� = Qxy 
(e� -ex + lzlk'{) + Qyy 

(e� -e
y 

-lzlk'{) 
(8.86) 

Note that lzl is the distance from the mid surface to a point of interest. 
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As expected, if ex = e
y

. k'j vanishes and e� = ex . Consequently, 
there are no residual stresses in the plies. 

For a rectangular plate shown in Figure 8.12, the out-of-plane dis­
placement is given by Equation 8. 77. However, since k':, = 0, we have 

(8.87) 

Equation 8.87 describes an anticlastic surface. The displacement wN 

attains different maximum magnitudes depending on a and b. That is, 

if a> b, 

(8.88) 

6. antisymmetric angle-ply laminates

Just like unsymmetric cross-ply laminates, antisymmetric angle-ply 
laminates are also susceptible to nonmechanical warping. The simplest 
example is that of a rectangular [-0 /0] T laminate. Again, its dimen­
sions are as shown in Figure 8.14, and T and care uniform throughout 
the laminate. For the stiffnesses of this laminate we refer to Sections 
4.5 and 6.5. 

The nonmechanical stress resultants follow from Equation (8.62) as 

N'{ = rJ' h + qN h cos20 

N'f = rJ' h -qN h cos20 (8.89) 

where r/' and qN are given by Equation 8.61, and because of the 
antisymmetry, M'{ and M'f vanish and the only nonzero moment is 

h2 MN = - qN sin20 
6 

4 
(8.90) 
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Therefore, Equation 8.4 7 with the superscript T replaced by N becomes 

(8.91) 

The in-plane stiffnesses listed in Table 4.8 are repeated here: 

A 11 = h(U1 + U2 cos20 + U3 cos40) 

(8.92) 

The remaining stiffnesses in Equation 8.91 are from Section 6.5: 
h2 (U2 

). B 16 = 
4 2 

sin 20 + U3 sin 40 

h2 (u2 

• • ) B26 = 
4 2 

sm 20 - U3 sm 40 (8.93) 
h3 D66 = - (U5 - U3 cos40)
12 

With all the stiffnesses known; the nonmechanical in-plane strains are 

(8.94) 

The remaining strains and curvatures are easily shown to vanish: 

e� =/!(=kf=O (8.95) 
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In· the material symmetry axes of the 0-degree ply, the final non­
mechanical strains are 

e1j =

-2m n e0 
+ 2m n e0 + (m2 

- n2) kN z
1 2 6 

where m = cos0 and n = sin0. 

The residual stresses are thus obtained from 

(8.96) 

(8.97) 

Finally, the nonmechanical displacement wM depends only on k'/,: 

wM = (8.98) 

Thus, the largest displacement of the plate in Figure 8.14 occurs at the 
corner (a.b):

(8.99) 

7. effect of residual stress on failure

As we saw in Chapter 7, the strength ratios for a unidirectional com­
posite can be obtained by solving a quadratic equation in stress space or 
in strain space. All material constants in F's and G's are known for a 
given material including the assumed value for the interaction term. 
Then, for a given state of stress or strain, the strength ratios R and R' 
are the two roots of the appropriate quadratic equation. For the 
strength ratios of a laminate, we must first establish the on-axis ply 
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strain. Then the strength ratio can be calculated ply by ply. 
If residual strains are to be included, we must redefine the strength 

ratio based on the mechanical strain, 

(8.100) 

This ratio signifies the amount of applied strain that can be increased 
before failure occurs. The strain which produces stresses in the plies is 
the sum of the mechanical strain and the residual strain, as shown in 
Equation 8.55 and Figure 8.15. Therefore, the failure criterion 7.26 
becomes 

Subs ti tu ting Equation 8.100 into Equation 8.101, we obtain the equa­
tion for the mechanical strength ratio as follows: 

or, in short, 

The positive roots are 

R = 

R' = 

aR 2 
+ bR + c = 0 

- !_ + [(.!!_)2 -E..] ½
2a 2a a

�+ [ (.!l...)2 -E...] ½
2a 2a a

(8.102) 

(8.103) 

(8.104) 

A comparison of Equation 8.102 with Equation 7.50 shows that, in 
the presence of residual strains, the failure surface is simply dislocated 
by the amount of the residual strains in the opposite direction. Such 
translation of failure surface is schematically shown in Figure 8.16 for a 
constituent ply in a laminate. 

Since all plies of the laminate are made of the same material, the 
on-axis free nonmechanical strain e; will remain the same for a given 
temperature and moisture concentration. For a symmetric laminate, the 
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Figure 8.15 Relation between total strain of a laminate and ply strain. Total 
strain in (c) is based on as-cured plies in (a). The strengths of unidirectional 
composites are measured from cured and expanded plies in (b ). So strength 
analysis must be based on E1 (a) and E2 (a) shown in (b). 

WITH RESIDUAL STRESS 

-e/
Figure 8.16 Translation of failure surface caused by residual 
stress in a constituent ply of a laminate. The residual stress 
moves the failure surface by -cf. Note that the shape of the 
failure surface in the strain space is not changed by the 
residuaf stress. - .. . 
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nonmechanical ply strains are equal to ef in the laminate axes, but the 
on-axis nonmechanical ply strains depend on the ply orientations. So 
for multidirectional laminates, there are as many different on-axis 
residual strains as there are ply orientations. Figure 7.9 shows the 
strength ratio for each ply of a laminate under a given loading condi­
tion. Note again that the strength ratios are based on mechanical strain; 
as such, they will provide a measure of the margin of safety on how 
much increase the mechanical strain can sustain before failure. Of 
course, the residual strains must be included in Figure 7 .9. 

Up to now we have addressed the in-plane strength of a symmetric 
laminate. For the flexural strength of a symmetric laminate, we face a 
linear variation of mechanical strain across the thickness of the lam­
inate. Specifically, the mechanical strain due to the applied moment is 

(8.105) 

Therefore, the equation for the mechanical strength ratios becomes 

Gi/Rzki + ef) (Rzk; + ef) + Gj(Rzki + ef) - 1 = 0 (8.106) 

For a given ki , the positive root of this equation is the product of the 
strength ratio R and the coordinate z. A higher z would mean a lower 
strength ratio within each ply or ply group. Thus the outer surface of 
each ply, having higher z, would be the location to calculate the 
strength ratio . 

8. effects of temperature and moisture

on properties of unidirectional composites

Polymers presently used in composites are susceptible to temperature 
and moisture. Consequently, the transverse and shear properties of uni­
directional composites, which are very much affected by matrix proper­
ties, also degrade upon exposure to elevated temperature and upon 
absorption of moisture. However, the change of longitudinal properties 
in the same range of temperature and moisture variations is negligible 
because of the excellent retention of mechanical properties by the 
fibers. 
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Figure 8.17 shows typical changes in moduli of AS/3501 caused by 
temperature and moisture concentration. Similar changes in tensile and 
shear strengths of the same material are shown in Figure 8.18. the 
general features of these figures can be summed up as follows. 
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Figure 8.17 Effects of temperature and moisture concen­
tration on tensile and shear moduli of AS/3501. (Data 
from [31). 

The longitudinal properties are not degraded by temperature and 
moisture. This behavior is a manifestation of excellent resistance of the 
graphite fiber to hygrothermal exposure. 

The room temperature properties do not change much upon mois­
ture absorption. However, this statement needs a qualification. Note 
that the transverse strength Y suffers a significant loss at higher 
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Figure 8.18 Effects of temperature and moisture concentra-
tion on tensile and shear strengths of AS/3501. (Data from (3)). 

moisture concentrations while the transverse modulus ET does not. 
Since the interfacial bond strength between fibers and matrix affects Y 
hut not E

r
, we can conclude that the reduction in Y may be a result of 

the weakening of the interfacial bond by absorbed moisture. 
The most reduction in properties occurs when temperature and 

moisture are combined. Consequently, poor structural performance of 
unidirectional composites is expected in hot and humid environments. 

Whereas hot and humid environments are detrimental to the matrix­
controlled properties of unidirectional composites, the same is not 
necessarily true for laminated composites because in such environments 
laminates can be free of residual stress or may even benefit from 
residual stress. For example, consider a,[ 0/90] 

8 
laminate subjected to a 
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tensile load in the 0-degree direction. After fabrication the residual 
stress a

y 
in the 90-degree ply is tensile. However, as temperature and 

moisture concentration increase, a
y 

will decrease and may become 
compressive. Thus, even though the transverse strength Y decreases, the 
90-degree ply may fail at higher applied load. The net effect can be 

predicted using pertinent property data in conjunction with Equation 
8.10 2. 

9. sample problems

a. A I-mm thick [0/±45/ 90ls graphite/epoxy laminate is exposed on
both sides to air at a temperature of 75°C and 90 percent relative 
humidity. The initial moisture content is 0.5 percent. Estimate the time
required to reach one percent moisture content. Use the approximate 
equation for time sufficiently large. 

In Equation 8.34 the following variables are known: 

C = 0.01, C
0 

= 0.005 

h = l mm 
(8,107) 

!he e�uilibrium moisture concentration at 90 percent relative humidity
1s obtained from Equation 8. 39. Since a = 0.01 8 for the graphite/epoxy 
as listed in Table 8. 2, we have 

(8.108) 

Next, the diffusion coefficient at 75°C follows from Equation 8. 40. 
Again, the appropriate constants are taken from Table 8. 2. The result is 

KH = 6.51 Xexp (-5
3
7
4
2
8
2) =4. 706X 10-1_mm2 /s (8.109)

Therefore, the time required is 

(8,110) 
= 2 2.8 h
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b. Determine the in-plane thermal expansion coefficients and the
re�idual stresses for a [ 0/±45/90] s T300/5208 laminate at room tem­
perature (= 22°C). The stress-free temperature is the cure temperature, 
and use the properties in Table 8.2. 

The in-plane stiffnesses of this laminate are given in Section 4.6. The 
ply nonmechanical strains are 

where 

ex = 0.02 b,.T µm/m, e
y 

= 22.5 b,.T µm/m 

b,.T = 295 -450 = -155 K 

(8.111) 

(8.112) 

The corresponding equivalent stresses follow from Equation 8.59 as 

aT = 68.89 b,.T kPa, aJ = 232.8 l:::i.T kPa 
X 

(8.113) 
aT = 0 

s 

These stresses in tum yield 

PT = 150.8 l:::i.T kPa, qT = -81.94 l:::i.TkPa 
(8.114) 

rT = 0 

The integrals of the trigonometric functions all vanish. Therefore, the 
nonmechanical stress resultants are simply given by 

Consequently, the thermal in-plane strains are 

1-v eoT= e?.,T =-pT
1 2 

E 

Using the values of E and v in Equation 4.63, we finally obtain 

e� T 
= � T 

= 1.52 l:::i.T µm/m 

�T= 0

(8.115) 

(8.116) 

(8.117) 
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The corresponding in-plane thermal expansion coefficients are 

<ft = � = 1.52 (µm/m)/K 

� = 0 
(8.118) 

The residual stresses in each ply are obtained from Equation 8.52.
Since we have 

(8.119) 

for each ply, the residual stresses do not change from ply to ply. The 
final results are 

a
R = 213 l:::i.TkPa = -33.0 MPa X 

'1 = _-213 l:::i.T kPa == 33.0 MPa (8.120) 

a: = 0 

c. Determine the nonmechanical in-plane strains and curvatures of a
[ Os /90s] T T300/5208 laminate at room temperature and 50% relative 
humidity. Use the properties in Table 8.2. The thickness of the 
laminate is 2 mm . 

The equilibrium moisture content at 50% relative humidity is 0.009. 
Since the temperature difference is -155 K, the nonmechanical strains 
are 

0.02 X (-155) + 0 X 9 =-3.1 µm/m 

e
y 

= 22.5 X (-155) + 440 X 9 = 472.5 µm/m 
(8.121) 

The nonmechanical stress resultants are determined by Equation 
8.78: 

N'f = Nlf = 5.682 kN/m

(8.122) 
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On the other hand, Equation 8.80 gives the nonmechanical moments as 

MN 
= -MN

2 
= 2.036 N 

1 

(8.123) 
Mlf = 0 

Finally, using the moduli in Section 6.4, we obtain the nonmechanical 
strains and curvatures as follows: 

e� = e� = 107 µm/m, e� = 0 
(8.124) 

Note that these answers can be obtained directly from Equation 8.84. 
d. A l 00 mm X I 00 mm plate is made of (-458 /458] T T300/5208.

Determine the maximum out-of-plane deflection at room temperature 
and 50% relative humidity. Use the results of the preceding proble_m . 

The nonmechanical stresses corresponding to the nonmechanical 
strains calculated in the preceding problem are 

a'j = 0. 805 MPa, a1J = 4. 88 MP a 

al/= 0 

These stresses in tum yield 

pN = 2.84 MPa, qN =- 2.04MPa 

,-N = 0 

(8.125) 

(8.126) 

Using 0 = 45° in Equations 8.89 and 8.90, we calculate the nonvanish­
ing components of NI/ and Ml/ as 

N"( = Nf = 5.68 kN/m

(8.127) 
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The bending modulus D66 is given in Section 6.5 as 

D66 = 31 Nm 

Therefore, the nonmechanical curvature k'f becomes 

--2-04
- 0 066 -}-----

m 31 . 

(8.128) 

(8.129) 

!he maX:i�um -deflection or the plate is obtained by substituting k'/
mto Equat10n 8.99 and noting that a= b = 100 mm:

(8.130) 

e. A [0/±45/90]s AS/3501 laminate is subjected to the stress resul­
tants Ni = 30 kN/m, N 2 = 20 kN/m at room temperature immediately 
after fabrication. What is the strength ratio for each ply? If there were 
no residual stresses, what would be the strength ratios? Use the thermal 
properties in Table 8.2. 

�rom Problem b the residual strains in the material symmetry co­
ordinates are seen to be the same in all plies. Specifically, they are 

ef = e�T -ex
= -294.5 µm/m 

� = etT -e
y 

= 4107.5 µm/m 
(8.131) 

The in-plane moduli are obtained by substituting U1, U4 and U5 of 
Table 3.6 into Equation 4.62: 

E = 54. 83 GP a, 

V = 0.284 

The mechanical laminate strains are 

= 

E
1 (

Nhl - V

Nh2)

Note that we have used h = I mm. 

(8.132) 

= 443.6 µm/m 

(8.133) 
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Using Gu in Table 7.3 we can calculate a, band c in Equation 8.103 
for each ply: 

The mechanical strains are: 

0-degree ply

_M = eoM _M = eoM e1,W = o
c;i 1 , Cy 2 , s 

90-degree ply

_M = eoM _M = eoM e1,W = 0
c;; 2 , e:,;; 1 , s 

45-degree ply

(8.134) 

(8.135) 

(8.136) 

e1,W = e1,W = .!. (eolM + €0
2
M ), � = -(e�M - e�M ) (8.137)

X y 2 

The final results are given below in a tabular form: 

Ply a(l0-3) b(l0-3) c(I0-3) R R' 

0-degree 1.45 57.60 -344.1 5.2 45.0 

90-degree 1.46 89.88 -344.1 3.6 65.2 

45-degree 1.53 69.70 -344.l 4.5 50.1 
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In the absence of residual stresses, the results would be as follows: 

Ply a(l0-3) b(l0-3) c(l0-3) R R' 

0-degree 1.45 44.80 -1000 15.0 45.9 

90-degree 1.46 66.22 -1000 11.9 57.3 

45-degree 1.53 55.50 -1000 13.2 49.5 

The strength ratios to be used under the given state of stress are given 
by R. Note that the strength ratios in tension, R, are substantially 
reduced by the residual stresses for all plies. However, in compression 
the strength ratios, R ', can increase 1n the presence of residual stresses. 

10. conclusions

As polymers undergo both dimensional and property changes under the 
change of environment, so do composite materials utilizing polymers as 
matrix phase. For most structural composites, fibers are fairly in­
sensitive to environmental changes. Thus, the environmental suscepti­
bility of composites is mainly through the matrix phase. 

While the thermal diffusion through composites can be described by 
the Fourier equation, the Fick's equation can be used to handle the 
moisture diffusion. Under most circumstances, these two equations can 
be used separately because the thermal diffusion takes place at a rate in 
the order of 106 times faster than the moisture diffusion. 

Dimensional changes resulting from environmental changes are 
described by a modified set of linear equations. That is, the total strain 
minus the nonmechanical strain is linearly related to the stress. The 
nonmechanical strain is measured from a stress-free reference state and 
the elastic moduli to be used are taken at the final environmental 
condition. The theory is based on the assumption of elastic behavior; 
however, a nonlinear dependence of the nonmechanical strains on the 
temperature change and moisture concentration is allowed. 

The anisotropy of unidirectional composites also manifests itself in· 
the hygrothermal behavior. Because of the directional dependence of 
hygrothermal expansion, residual stresses are induced in composite 
laminates. These residual stresses can be calculated using the laminated 
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plate theory developed in the preceding sections. Since the transverse 
residual stresses in plies after fabrication are tensile while the residual 
stresses induced by moisture absorption are compressive, a combination 
of temperature and moisture concentration can be chosen to render a 
laminate free of residual stresses. 

The residual stresses in a laminate change the ply failure stresses; the 
ply strength ratios depend on the residual stresses. Depending on the 
direction of loading, the residual stresses can be beneficial or deleteri­
ous. Also, the transverse residual stresses are usually much lower and 
even compressive in a hostile environment such as high temperature and 
high humidity. Therefore, although material properties are degraded in 
the hostile environment, such environment is rather beneficial from the 
viewpoint of residual stresses. The true effect of residual stresses can be 
assessed only by analyzing the overall performance of the composite 
under a given service condition. 

In this chapter we have presented an analysis method for the hygro­
thermal behavior of composite laminates. By necessity a few simplify­
ing assumptions had to be introduced. Any improvement over the 
present theory quickly brings complexity and the necessity for more 
information about the material behavior. In the absense of such addi­
tional information, the present theory can still be used to analyze the 
average behavior of composite laminates. 
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11. homework problems

a. In a moisture absorption test a dry 10 mm X 1 0 mm glass/epoxy
laminate was immersed in water. The laminate was 2-mm thick, and
the equilibrium moisture content was 2%. The additional moisture
contents measured at three different times were as follows:

c = 0. 2% at t = 16 h 

= 0.4% att = 64 h

= 0.6% at t = 144 h

What is the diffusion coefficient of the glass/epoxy laminate? 
b. In one-dimensional diffusion through the thickness it takes l month

for a 1-mm thick graphite/epoxy laminate to reach 90% of the equi­
librium moisture content at 22° C. How long does it take for a
10-mm thick graphite/epoxy laminate to reach the same moisture
content at 75°C?

c. For a graphite/epoxy laminate with the properties of Table 8.2,
determine the change in volume when the temperature is increased
by 100 K and the equilibrium moisture concentration by 1 percent.

d. Show that for a [ -0 /0] s laminate the inplane nonmechanical strains
are given by

where 

0 _h[l1(A22 -A12)+l2 (A12 +A22)cos20] 
e i - ________ __:.__..:...::.. _ __::..:.,: __ _: 

11 = 

12 = 

Pe = 

qe 
= 

A11A22 -Ai2 

U1Pe + U2qe + U4Pe 

U2Pe + qe ( U1 - U4 + 2U3) 

I 
2(ex+ey) 

1 -(e -e )2 X 
y 



• 

• 

374 introduction to composite materials 

In the above equations, h is the thickness and the U's are functions 
of Qii defined in Section 3.1. 

e. A unidirectional composite has the following properties:

Ex = 910 MPa, E
y 

= 7.24 MPa 

E
s 

= 1.81 MPa 

When the composite is immersed in benzene until an equilibrium 
state is reached, the swelling strains are 

e
y 

= 0.75, 

Now a [-0 /0] s laminate is made of the composite jus� described. 
What is the angle 0 which gives a minimum swelling stram e1 when 
the laminate is subjected to the same environment? Is the minimum 
swelling strain positive or negative? 

f Determine the residual stresses in a [0 /90] s AS/3501 laminate when 
the laminate is subjected to an 80% relative humidity at 30°C. Also, 
determine the strength ratios when a stress resultant Ni of 10 kN/m

is applied. Assume the laminate is in an equilibrium state. 
g. Show that the residual stresses in [ 0/±60] s laminate are the same as

those in [0/ ±45/901s and [0/901s laminates.
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nomenclature 

C 

(' 

(' 

K� 
KT. 
¥ 

qi 

q1! 
R 

R,R' 

T 
t 

To 

CX; 
f3; 
Sub ,i 
Sub o
Sub 00 

SupH 
SupM 
SupN 
SupR 

= Spedfk heat, in .l/g-1< 
= Specific moisture concentration, in g/g 
= Moisture content or average specific moisture concentration 
= Nonmechanical strain of a ply 
= Nonmechanical in-plane strain of a laminate 
= Activation energy, in J/mole 
= Moisture concentration, in g/m3 

= Moisture diffusion coefficient in the transverse direction 
(= KH = KH )

y z 
= Pre-exponential factor for KH , in m2 /s 
= Thermal conductivity, in w/(m•K) 
= Heat flux, in w/m2 

= Moisture flux, in g/(m 2 ·s) 
= Gas constant[= 8.319 J/(mole·K)l 
= Strength ratios 
= Temperature, in K 
= Time 
= Stress-free temperature 
= Thermal expansion coefficient, in (µm/m)/K 
= Swelling coefficient 
= Partial differentiation with respect to X;.
= Initial equilibrium 
= Final equilibrium 
= Hygro- (moisture-related) 
= Mechanical 
= Nonmechanical 
= Residual 
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chapter 9 
micromechanics 

Elastic moduli and hygrothermal expansion coefficients of unidirec­
tional composites can be predicted from the properties and volume 

fractions of the constituents. Easy-to-use fonnulas are presented for 
such predictions. The strength prediction is difficult, and is limited to 
specific composite materials under specific failure modes. A general 
micromechanics theory comparable to the elastic moduli is not avail­
able at this time. 

··-:-:.:······:·····:········· .... ·.·.·.·.·.·.·.·.·.·.•,•,•,·.· . . ..
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1. general remarks

In the preceding chapters unidirectional composites have been treated 
as anisotropic, in particular, transversely isotropic, homogeneous mate­
rial. Upon magnification, however, these co�posites 

_
reveal a hete_i:o­

geneous structure - fibers embedded in matnx. A typical cros_s sect10n 
of a Kevlar/epoxy composite is shown in Figure 9.1. In the figure the 
Kevlar fibers are approximately 12 µm in diameter. Typical properties 
of some fibers are listed in Table 9.1. 

Figure 9 .1 Cross section of 

In structural composites fibers are 
stiff and strong, and serve as the load­
bearing constituent. On the other hand, 
matrix is soft and weak, and its direct 
load bearing is negligible. However, the 
role of matrix is very important for the 
structural  integrity of composites; 
matrix protects fibers from hostile envi­
ronments and localizes the effect of 
broken fibers. 

a Kevlar/epoxy composite. 
Fihers are 12 µm in diameter. Micromechanics is a study of mechan­

ical properties of unidirectional com­
posites in terms of those of constituent 

materials. In particular, the properties to be discussed are elastic 
moduli, hygrothermal expansion coefficients and strengths. 

table 9.1 
typical fiber properties 

Fiber Diameter Density Modulus. Strength 

µm g/cm3 GPa GPa 

Graphite 
230 2.80 (T300, AS) 7 1.75 

Boron 

(4-mil) 100 2.6 410 3.45 

Glass 

(E) 16 2.6 72 3.45 

Kevlar 

(49) 12 1.44 120 3.62 
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In discussing composite properties it is important to define a volume 
element which is small enough to show the· microscopic structural 
details, yet large enough to represent the overall behavior of the com­
posite. Such a volume element is called the representative volume 
element. A simple representative volume element can consist of a fiber 
embedded in a matrix block. 

Once a representative volume element is chosen, proper boundary 
conditions are prescribed. Ideally, these boundary conditions must 
represent the in situ states of stress and strain within the composite. 
That is, the prescribed boundary conditions must be the same as those 
if the representative volume element were actually in the composite. 

Finally, a prediction of composite properties follows from the solu­
tion of the foregoing boundary value problem. Although the procedure 
involved is conceptually simple, the actual solution is rather difficult. 
Consequently, many assumptions and approximations have been intro­
duced, and therefore, various solutions are available. In this chapter, 
however, we limit our discussion to the simplest model without loss of 
generality in the procedures involved . 

2. density of composite

Consider a composite of mass Mand volume V, schematically shown in 
Figure 9.2. Here Vis the volume of a representative volume element. 
Since the composite is made of fibers and matrix, the mass Mis the sum 
of the total mass M

1 
of fibers and the mass Mm of matrix: 

(9.1) 

Equation 9.1 is valid regardless of voids which may be present. How­
ever, the composite volume V includes the volume V., of voids so that 

(9.2). 

Dividing Equations 9.1 and 9.2 by Mand ,V, respectively, leads to the 
following relations for the mass fractions and volume fractions: 

(9.3) 

(9.4) 
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MATRIX 

Vm, Mm 

Figure 9.2 A representative volume 
element. The total volume and mass 
of each constituent are denoted by V

and M, respectively. The subscripts m
and f stand for matrix and fiber, 
respectively. 

In this section the subscripts f, m, v are exclusively used to denote 
fihN. matrix and void. respectively. Thus these subscripts do not follow 
the rules or lmkx notation. 

The composite density p follows from Equations 9.1 and 9.2 as 

(9.5) 

In terms of mass fractions, p becomes 

(9.6) 

Equation (9.6) is frequently used to determine the void fraction 

(9.7) 

The mass fraction of fibers can be measured by removing the matrix.

In the case of glass/epoxy composites the matrix can be burnt out

without affecting the glass fibers. As for boron/epoxy and graphite/

epoxy composites, acids are usually used to dissolve the matrix. Once

m1 is thus determined, the mass fraction mm of matrix simply follows

from Equation 9.3. 
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3. composite stresses and strains

In Equation 9.5 the composite density p is seen to be equal to the 
densities of the constituents averaged over the composite volume. The 
composite stresses and composite strains are defined similarly. 

Suppose t�e stress field in the representative element is ai. The com­
posite stress ai is defined by 

(9.8) 

We now introduce the volume-average stresses a1 .. and a . in the fibers
• • 

I /Ill 

and matnx, respectively, 

Since no_ stress is__ tra_nsmitt�d in the voids, i.e., ai 
Equation 9.8 can be written as 

(9.9) 

0 within Vv , 

(9.10) 

Equa�ion 9. 10 thus Jives th� composite stress a
i 

in terms of the average 
constituent stresses afi and ami 

Similarly to the composite stress, the composite strain is defined as 
the volume-average strain, and is obtained as 

€· = V1· €/" + V € · + V € · 
I J I Ill /Ill V VI (9.11) 

Unlike the stress, the strain in voids does not vanish. The void strain is 
d_efined in terms of the boundary displacements of the voids. However,
smce the void fraction is usually negligible, i.e. less than 1 % in com­
�osites of �cceptable quality, we neglect the last term on the right-hand 
side. Thus, 111 the following discussions we shall use 

(9. 12) 

with the understanding that (vf + vm ) is unity. 
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Note that Equations 9.10 and 9.11 simply follow from the defini­
tions of the composite stress and strain that the composite variables are 
the volume averages. Thus, these equations are valid regardless of the 
material behavior. 

Determination of the composite stress and strain requires the 
knowledge of the stress and strain fields within composite. However, we 
shall show that they can be determined directly from the boundary 
tractions and boundary displacements. 

Consider a representative volume element in the form of a rectangu­
lar prism, as shown in Figure 9.3. The fibers in ,_!:h� eleme_nt are per­
fectly bonded to the matrix. Suppose a stress ax 1s applied on the 
boundaries at x = 0 and L 1 • 

y 

r 

□ Lz 

-

L1 X 

r 
� 0 

-

z L3 

(o) 

□ u Ox
(b) 

r4tt 

�11. 
(d) Vs 

LJ 
(c) 

A1 : BOUNOARY AT x = L1 

Az: BOUNOAR AT y : Lz 

Figure 9.3 Force and displacement boundary conditions 
applied to a representative volume element. Initial shapes 
are indicated by broken lines in (b ), (c) and (d). 
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By definition the composite stress a
x 

is given by 

(9.13) 

where A (x) is the cross section at x normal to the x-axis. Of course, the 
area of A(x) is constant and equal to L2L3 • The equilibrium condition 
requires that the resultant of ax be equal to the resultant of the applied
stress ax ,

(9.14) 

Substituting Equation 9.14 into Equation 9.13, we can show that a
x 

is 
equal to the average applied stress, 

(9.15) 

Similarly, the other stress components a2 and a6 are equal to the 
respective average applied stresses, 

(9.16) 
I 1 asdA as 

= 

L2L3 A, 

In case when the applied stresses are uniform, i.e., 

ax 
= ao onA 1 X 

~ 

ao on A 2 (9.17) a
y y 

~ 

ao onA
1 

as 
= 

s 
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4. elastic moduli of composite

In a state of plane stress which is applicable to thin laminates, the 
required composite stress-strain relations are 

(9.27) 

0 

0 

0 0 

Thus our goal is to determine the four components of the composite 
compliance matrix S;i in terms of the structural details of the com­
posite and the compliance matrices of the constituents. 

There is a total of 18 variables - 3 components each of stress and 
strain for the fiber, matrix, and composite, respectively. Since we are 
seeking 3 stress-strain relations of Equation 9. 27, we need 15 equations 
relating those 18 variables. Six of these required equations are provided 
from the definitions of the composite stress and strain, Equations 9.10 
and 9.12. Six additional equations are the constitutive relations of the 
constituents, 

er;= sfii ari• €mi = smij 0mj (9.28) 

where 
I/Er -vr!Er 0 

S
fii

= -vrfEr I/Er 0 

0 0 I/Gr 
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I/Em -vm/Em 0 

smij = -vm /Em I/Em 0 (9.29) 

0 0 I/Gm 

Yet we need three more equations which must be chosen so that (I) 
stresses are in equilibrium, (2) strains are related to stresses through 
constitutive equations, (3) strains are related to displacements, and (4) 
the given boundary conditions are satisfied. However, finding the stress 
and strain fields which satisfy all four conditions described above in a 
realistic representative volume· element is rather complicated. There­
fore, here we shall choose a simple representative volume element and 
simple boundary conditions so that the above conditions are easily 
satisfied. 

Consider a composite laminate with fibers in the x direction, Figure 
9.4. The representative volume element of this composite is chosen to 
be a fiber embedded in a matrix plate. The fiber is assumed to have a 
rectangular cross section with the same thickness as the matrix plate. 
Therefore, the width ratio wr/(wr + wm ) is chosen to be the same as 
the fiber volume fraction of the composite itself. 

.__ _____ __,_ 

B C X 

Figure 9.4 A simple representative volume 
element. A perfect bond is assumed between 
th.e fiber and the matrix. 
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where a1 are constants, the composite stresses become equal to the 
applied stresses. That is, 

(9.18) 

Referring back to the representative volume element of Figure 9.3, 
we now show that the composite strains are related to the average 
relative boundary displacements. First, consider the composite strain E

x 

which, for the representative volume element, is given by 

(9.19) 

At each point in the cross section A(x), we evaluate the integral of e
x 

over the length L I to obtain 

f e
x

dx = f (au/ax) dx == u
JL, L, 

(9.20) 

Here, u is the value of u at x = L 1 and we have assumed u = 0 at x = 0. 
Of course, u depends on y and z and represents the displacement of the 
boundary at x = L 1• Substitution of Equation 9.20 into Equation 9.19 
thus results in an equation relating the composite strain to the average 
boundary displacement, 

(9.21) 

The remaining strains can be easily found to be 

(9.22) 
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Note that v in the equation for e
y 

is the displacement of A 2 whereas v
s

in the equation for e
8 

is the displacement of A 1 in they direction. 
If the boundary displacements are uniform, i.e., 

~ 

u 
- --

~ 

V 

== e� L1 

= e� L2 

~ - o Lv8 - e
s 1 

onA 1 

on A 2 

on A 1 

where e1 are constants, the composite strains reduce to 

(9.23) 

(9.24) 

Equations 9.15, 9.16, 9.21, and 9.22 allow us to determine the com­
posite stresses and composite strains directly from the boundary condi­
tions without knowing the stress and strain distributions within the 
representative volume element. These results are very helpful in tests 
where the applied loads and relative displacements are directly mea­
sured. Equations 9.18 and 9.24 are frequently used in the derivation of 
composite moduli. 

The conservation of energy requires that the strain energy stored. 
within the representative volume element be equal to the work done 
by the applied stresses, 

(9.25) 

If either the applied stresses or the boundary displacements are uni­
form (see Equations 9.17 and 9.23), then the strain energy density 
within the representative volume element is simply given by 

W=- a-e-dV=-a-e-1 .fv l--
2V V 

I I 2 I I 
(9.26) 

Thus the strain energy density of composite is the same in form as that 
of a homogeneous material. 
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Suppose boundary AB is fixed and boundary CD is given a uniform 
displacement BC€�. Boundaries AD and BC are free. Thus the imposed 
boundary conditions are 

~ BC€
0 on CD u =

= 0 on AB 
(9.30) 

~ 

0 on AD and BC O
y 

= 

~ 0 on all boundaries as 
= 

Using Equations 9.15-18 and 9.21-24, we easily find that 

- - = €� €x 
= €tx 

= €mx 

- -

0 (9.31) O
y 

= afy 
= Omy 

= 

- - - =0 as 
= 0ts = 0ms 

Equation 9.31 can now be used to determine the composite stress-strain 
relations. From Equations 9.10 and 9.23 we see that 

(9.32) 

Therefore, the longitudinal Young's modulus Ex becomes 

(9.33) 

Next, the transverse comp'osite strain E
y 

is related to the longitudinal 
composite strain fx by 

(9.34) 

The longitudinal Poisson's ratio is thus 

(9.35) 
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To determine the transverse Young's modulus E
y

, we apply the fol­
lowing boundary conditions 

on AB and CD

ay 
= a� on AD and BC (9.36) 

on all boundaries 

Again, using Equations 9.15-18 and 9.21-24, and neglecting the shear 
stresses on the fiber/matrix interface we find that 

-

ax 
= afx = amx = 0 

- - -

ao O
y 

= afy 
= amy 

= 
y 

(9.37) 

- -

0as = 0ts 
= 0ms 

=

Therefore, the composite strain e
y 

is given by 

(9.38) 

The resulting transverse Young's modulus is obtained from 

(9.39) 

Finally, the boundary conditions for the determination of the shear 
modulus are 

on AB and CD

on AD and BC (9.40) 

of on all boundaries. 
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The procedures to be followed next are similar to those for E
y

. There­
fore, the shear modulus is given without derivation: 

(9.41) 

Equations 9.33, 9.35, 9.39 and 9.41 are called the rule-of-mixtures 
equations for composite moduli. 

The boundary conditions to be imposed on the representative 
volume element must simulate the in situ state of stress as closely as 
possible. When a?. was applied on boundaries AD and BC we assumed 
no stress on bomidaries AB and CD. However, such boundary condition 
is not realistic because "i

rx is not the same as Emx unless vr
!E

r 
= vml Em . 

The resulting difference in displacements cannot be sustained in actual 
composites. 

To remedy the foregoing contradiction, we modify the boundary 
conditions 9.36 as follows: 

~ 

C • BC on CDu =

= 0 on AB

(9.42) 
ay

= � on AD and BC

~ 0 on all boundaries as =

The constant C is to be determined from the condition ax = 0. 
The application of Equations 9.15-18 and 9.21-24 allow the follow-

ing equations: 
- -

=C Ex = Erx = Emx 

- -

= ao (9.43)ay = a
ry = amy y

- - -

=0 as = a
rs = ams 
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Combining Equation 9.28 with Equation 9.43 and recalling a
x 

= 0, we 
first obtain o

rx and amx as 

(9.44) 

Thus the transverse Young's modulus E
y 

is obtained from 

vJ Em /Er + v; E
r/Em - 2vfvm 

vf
E

r + vmEm 

(9.45) 

The determination of C leads to the transverse Poisson's ratio V
y 

because 

C
V 

=-.2.. a
o 

E y 
y 

(9.46) 

It can be shown that V
y 

determined from Equation 9.46 satisfies the 
symmetry condition 

(9.47) 

The first two terms on the right-hand side of Equation 9.45 are the 
same as Equation 9.39 based on a uniaxial state of average stress. The 
third term represents the effect of lateral constraint imposed by the 
strain compatibility and leads to a higher transverse modulus. 

Equations 9.33 and 9.35 provide accurate predictions for the longi­
tudinal Young's modulus and Poisson's ratio. However, Equations 9.39 
and 9.41 give lower values than experimentally observed for the trans­
verse Young's modulus and shear modulus, respectively, as can be seen 
in Figures 9.5 and 9.6 for a glass/epoxy composite. Equation 9.45 
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FIBER VOLUME FRACTION 

Figure 9.5 Transverse modulus versus fiber 
volume fraction for a glass/epoxy composite. 
The solid lines represent Equation 9.49, and 
the broken lines Equation 9.45. Equation 9.45 
can be modified to include 'Tl , and Equation 
9.39 is represented by the solid line with 'Tl

y 
= 1. 

The elastic moduli used are: E
1 

= 73.1 GPa, Em 
= 3.45 GPa, v1 = 0.22 and vm = 0.35. (Data 
from [ 1] ). 

yields a higher modulus than Equation 9.39. However, both predictions 
are considerably lower than the data. A simplistic method of correcting 
for such discrepancy is discussed in the next section. 

5. modified rule-of-mixtures equations
for transverse and shear moduli

In the preceding section the representative volume element consisted of 
two plates of the same thickness, each representing a fiber and matrix, 
respectively. However, in actual composites, fibers are completely 
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10.0 

7ls = 0.5 

7ls = I 

0-------...._ _ ___._ __ ..1.-_ __, 

0 -0.2 0.4 0.6 0.8 lO 

FIBER VOLUME FRACTION

Fisure 9.6 Shear modulus versus fiber Volume 
fraction for a glass/epoxy composite. The solid 
lines represent Equation 9.49, and T/ = l 
corresponds to Equation 9.41. The shear moduli 
used are: G

1
= 30.2 GPa and Gm= 1.8 GPa. 

(Data from [ 2] ) . 

surrounded by the matrix. Thus a more realistic representative volume 
element will be a concentric cylinder as shown in Figure 9. 7. Also, the 
boundary conditions should be changed to simulate the in situ state of 
stress the new representative volume element would be in. The exact 
determination of stresses is rather complicated and is beyond the scope 
of -this book. Therefore, -in the following we shall describe a semi­
empirical approach to provide better estimates of moduli than the 
simple rule-of-mixtures equations can. 

Noting that matrix is softer than fiber, we assume that 

(9.48) 
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----------

y 

z 

Figure 9.7 A concentric cylinder model. Boundary 
conditions to be applied are different from those for 

the representative volume element of Figure 9.4. 

The above equations imply that the average matrix stress has the same 
sign as, but lower in magnitude than, the average fiber stress, in trans­
verse or shear loading. The stress partitioning parameters 11v and Tis 

measure the relative magnitudes of the average matrix stresses as com­
pared to the average fiber stresses . 

The equations for the moduli can now be derived following the same 
procedure as in the preceding section but using Equation 9.48. The 
results are 

= (vf _I+ 17 v _I_) E vf+T/y Vm E
f 

y m Em y 
(9.49) 

E
s 

vf + T/s Vm 
(v

f / + T/s Vm G
l
m
) 

The above equations are the same as Equations 9.39 and 9.41 if 'Tl
y 

vm 

and 'T/sVm , respectively, are replaced by vm . 
The moduli predicted by Equation 9.49 with T/y 

= Tis = 0.5 are 
compared with the experimental data in Figures 9.5 and 9.6 .. These 
equations are seen to provide much better estimates of moduli than do 
the simple rule-of-mixtures equations of the preceding section. 

According to Equation 9.49 the moduli increase as the stress parti­
tioning parameters decrease. Decreasing parameters indicate an increas­
ing load sharing by fibers. Since fiber is stiffer than matrix, the resulting 
composite moduli therefore increase . 

So far we have not concerned ourselves with the dependence of the 
partitioning parameters on constituent properties. The experimental 
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correlations in Figures 9.5 and 9.6 show that the parameters are weakly 
dependent, if at all, on the fiber volume fraction. The results of some 
advanced methods (3, 4] based on the concentric cylinder model of 
Figure 9. 7 can indeed be used to show that 17s is independent of v .•
Furthermore, 

f 

1 ( Gm)17 =- l+-
s 2 G 

f 

(9.50) 

�ecause of the axisymmetry of the concentric cylinder model, it is
easier to determine moduli other than Ev . Specifically, the moduli to
be determined are the transverse plane strain bulk modulus k and the

y transverse s�ear �odu�s C
y

. When the only nonvanishing strain com-
ponents are e

y 
= €z = e, k

y 
yields 

(9.5 I) 

The transverse shear modulus relates the shear strain to the shear stress 
in the yz plane: 

(9.52) 

Once k
y 

and G y are known, the transverse Young's modulus E� is- given by · ·· -- -· 

where 

E = 
y 

m = 

(9.53) 

(9.54) 

The equations for k
y 

and C
y 

are similar to those for E
y 

and E 
s·That is, 

------

k
y vf + 'TlkVm 

(9.55) 
(continues) 
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where 

1/k 
= ( 1 + 9m

) 2(1-vm) klY

1 ( 3-4v m 
+ Gm

) 1/c = 

4(1-v m ) Gfy 

(9.55) 
( concluded) 

(9.56) 

In the foregoing equations the subscript y has been used to d�note t?e
transverse properties of fiber in case the fiber is transversely 1sotrop1�.
In this regard we note that graphite and aramid fibers are not isotropic 
but rather transversely isotropic. The equations derived so far are ~ 

summarized in Table 9.2 where P stands for property. 

table 9.2 
formulas for composite moduli 

p (vr
P

r
+rwm Pm ) v

f + 11Vm 

Engineering 

constant p pf pm 'T'/ 

E
X 

E
X 

E f E m 

vx 
vx 

v
f 

vm 

1 1 1 

t� 
E G

f 
Gm s 

1 1 
k

y k
y 

k
fy 

km 

G 1 

y Gy 
G

fy 
G m 

*See Equation 9.50 
• *See Equation 9.56 
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If the fiber is isotropic, the subscript y can be dropped. Furthermore, 
Equation 9.53 for the fiber becomes 

Therefore, 11 k reduces to 

(9.57) 

(9.58) 

Equations 9.49 and 9.53 together with Equations 9.50 and 9.56 are 
shown graphically in Figures 9.8 and 9.9, respectively, for three dif­
ferent composite systems: glass/epoxy, boron/epoxy and graphite/ 
epoxy. The properties of the epoxy are 

(9.59) 

In addition to the Young's moduli listed in Table 9.1, Poisson's ratio 
of the fibers is 

(9.60) 

For the glass and boron fibers, Er 
and v

f 
are sufficient. However, for 

the graphite fiber we further have 

Efy 
= 16.6 GPa, G

r
= 8.27 GPa

G
fy 

= 5.89 GPa 
(9.61) 

The stress partitioning parameters are shown as functions of G
r
/Gm 

in Figure 9.10. The matrix Poisson's ratio used is 0.35 and fibers are 
assumed to be isotropic with V

t 
= 0. 2 for 11k. The decreasing stress 

partitioning parameters indicate less load sharing by the matrix as 
G

r
/ Gm increases. 
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Figure 9.8 Transverse moduli predicted by 
Equation 9.53. The properties used are in 
Table 9.1 and Equations 9.59 through 9.61. 

For most structural composites the modulus ratio Gm /Cf is much

smaller than unity. Therefore, the corresponding stress partitioning

parameters can be approximated by 

r/s 2 

r/k 
(9.62) 

2( I-vm ) 

3-4vm 

r/c; 4( l-vm ) 
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Figure 9.9 Shear moduli predicted by Equa­
tions 9-49 and 9.50. The properties used are 
in Table 9.1 and Equ;itions 9.59 through 9.61. 

Thus, it is seen that these parameters depend only on the Poisson's ratio 
of the matrix. For most epoxies vm is close to 0.35. Therefore, the final 
values of the remaining ri's are 

r/k = 0.77 

ric = 0.62 
(9.63) 

From Figure 9. IO we see that the error in using the limiting values of 
ri's is less than 5 percent as long as the modulus ratio G

1
/Gm is larger 

than 20, which is the case for glass/epoxy. 
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1.0 

17 

a5 

Vf =0.2 

Vm = 0.35 

102 

Figure 9.1 O Stress partitioning parameters predicted by Equations 
9.50, 9.56 and 9.58. Fibers are assumed to be isotropic. 

6. hygrothermal properties

Hygrothermal properties of composite as a homogeneous, anisot�opic
material were discussed in Chapter 8. In this section we shall investigate 
how constituent properties affect the macroscopic hygrothermal be­
havior of composite. 

Consider a composite which is completely dry. In the dry state, the 
total mass M of a composite body is the sum of those of the fibers and 
of the matrix, 

(9.64) 

Now the same composite absorbs moisture and reaches an equilib­
rium state. The new mass M' after the moisture absorption is given by 

(9.65) 

Here M and M
r 

are the masses of moisture absorbed in the fibers mw w 
d 'd f and matrix, respectively. The last term on the right-han s1 e o 
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Equation 9.65 is-the amount ofmoisture entrapped in voids. The mois­
ture concentration in the composite is then 

(9.66) 

where m's are again mass fractions, and e's are moisture concentrations 
in the constituents. Specifically, we have 

(9.67) 

Equation 9.66 can also be rewritten in terms of mass densities or 
specific gravities; 

and (9.68) 

Note that Pw is the density of moisture. 
Unlike temperature the moisture concentration varies from fiber to 

matrix. Inorganic fibers such as graphite and boron do not absorb mois­
ture and hence, e

r
= 0. However, the moisture concentration in most 

epoxies can be as high as 8% . 
As discussed in the preceding chapter, a composite undergoes a non­

mechanical strain upon temperature change and absorption of moisture. 
It has been pointed out that such a nonmechanical strain is measured 
from the stress-free state and consists of the thermal strain and the 
swelling strain. Here we shall see how the constituent properties affect 
the nonmechanical strains of a unidirectional composite. 

In the presence of nonmechanical strains e
r
; and em;, the constitutive 

relations of the constituents, Equation 9. 28, are replaced by 

(9.69) 

Note that, since the constituents are isotropic, we have 

e
fx 

= e
rY 

= 

e
r, 

ers 
= 

0 
(9. 70) 

emx 
= emy 

=

em , 
ems = 0
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In Equation 9.69 the volume averages are taken only over the total 
strains and the stresses, but not over the nonmechanical strains because 
the· latter are uniform in each constituent. 

Now we use the rule-of-mixtures assumptions and recall that 

(9. 71) 

The nonmechanical strains ex and e
y 

of the composite are then ob­
tained by solving Equations 9.10, 9.12 and 9.69 in conjunction with 
Equation 9. 71 for fx and f

y 
in terms of e

1 
and em . The results are 

(9.72) 

In the absence of any applied stress, ex and e
y 

are the composite 
strains resulting from e

1 
and em . From Equation 9.71 we see that there 

are no residual stresses in the transverse direction in the constituents. 
Since e"

1x = fmx =ex , the residual stresses in the longitudinal direction 
are obtained by substituting Equation 9. 72 into Equation 9.69 and 
solving the resulting equations for the stresses. Thus the residual stress 
in the fiber is given by 

(9. 73) 

whereas in the matrix we have 

(9.74) 

If the thermal strains are proportional to temperature change, we can 
use the thermal expansion coefficients 

(9.75) 
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where T is the final temperature of interest and T
0 

is the stress-free 
temperature, usually the cure temperature. However, the dependence of 
moduli on temperature does not allow the use of thermal expansion 
coefficients for composite. Therefore, we define average thermal 
expansion coefficients by 

(9. 76) 

Substitution of Equations 9.72 and 9.75 into Equation 9.76 yields 

v
r

E/T)0t.
1 

+ Vm Em (T)am 

v
r
E/T) + Vm Em (T) (9.77). 

Equation 9. 77 can also be used as instantaneous thermal expansion 
coefficients when the change of moduli with temperature can be 
neglected in comparison with that of strains. Equation 9. 77 is shown 
graphically in Figure 9.11 for a glass/epoxy composite. 

The determination of swelling strain requires not only the average 
moisture concentration in composite but also the moisture concentra­
tions in constituent phases. Assuming zero void fraction, we solve 
Equation 9.68 for cm 

(9.78) 

where c1m 
is the ratio; s is specific gravity. 

(9.79) 

Substituting into Equation 9.72 the swelling coefficients of constit­
uents defined by 

(9.80) 
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and using Equation 9. 78, we obtain the average swelling coefficients of 
composite as 

f3y = 

0 .___...,L.__ .___...._ _ __. ___ ____. 

o 0.2 0.4 o.6 ae 1.0 

FIBER VOLUME FRACTION 

Figure 9.11 Thermal expansion coefficients of 
glass/epoxy composite. The properties used 
are:_ a.f = 5.0 (µm}_m)/K, o:m= 

= 54 (µm/m)/K
./: E

1
-72GPa,v

1
-0.2,Em 2.76GPa,vm 

0.35. 

(9.81) 
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A considerable simplification of the foregoing equations is possible 
for graphite/epoxy composites for which 

(9.82) 

The final results are given below without derivation: 

(9.83) 

7. strengths

As discussed in Chapter 7, unidirectional composites possess excellent 
strength and stiffness in the longitudinal direction because load is 
carried mostly by fibers. In the other loading conditions the load 
sharing is about equal between fibers and matrix; therefore, composite 
strengths are comparable to those of the matrix used. 

Another parameter which plays a very important role in the strength 
of composites is the interface between fiber and matrix. The assump­
tion of perfect interfacial bond under which elastic properties were 
discussed in the preceding sections was appropriate because the stresses 
involved were rather small. However, since failure of a material is 
initiated at the weakest point, a weak interface will certainly lead to a 
premature failure when a substantial load sharing is expected by the 
interface. 

Load sharing by constituent phases depends on the type of loading. 
Therefore, we shall discuss strengths of unidirectional composite under 
five different loadings: longitudinal tension and compression, transverse 
tension and compression, and shear. 

Consider a unidirectional composite subjected to a uniaxial tension 
in the fiber direction. Since fx = E

tx = Emx in the present case, the 
stresses in the constituent phases will be as schematically shown in 
Figure 9.1 2. This figure has been constructed based on the following 
observations. First, fiber is linear elastic up to fracture. Second, matrix 
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STRAIN 

MATRIX 

Figure 9.12 Typical stress-strain relations 
of fiber, matrix and composite. The com­
posite failure strain is close to the fiber 
failure strain. The matrix is nonlinear 
above the fiber failure strain . 

is linear initially; however, it behaves nonlinearly as strain increases. 
The, strain at which nonlinearity starts to appear is greater than the 
fracture strain of fiber. 

Since not all fibers are expected to be of equal strength and equally 
stressed, some fibers will fail before others. When these fibers break, 
there are three modes of further damage growth depending on the 
properties of the matrix and interface . 

If the matrix is brittle and the interface strong, the cracks created by 
the fiber breaks will propagate through the matrix across the neighbor­
ing fibers leading to the composite failure. If the interface is weak, then 
interfacial failure can be initiated at the fiber breaks and the fiber­
matrix debonding will grow along the broken fibers. A longitudinal 
damage growth is also possible in the form of matrix yielding between 
fibers if the matrix is ductile with low yield stress. As far as the com­
posite strength is concerned, the latter two modes of damage growth 
have a similar effect. Therefore, we shall simply divide the failure mode 
under a longitudinal tension into the transverse crack propagation mode 
and the longitudinal damage growth mode. 

The transverse crack propagation mode is in fact what is observed in 
brittle, homogeneous materials. In this failure mode, the strength of 
stronger fibers cannot be fully utilized, and hence the composite 
strength is not an optimum. 
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In the other extreme case of complete longitudinal damage growth 
mode., broken fibers are simply separated from intact ones as far as load 
sharing is concerned, and the composite will behave like a dry bundle of 
fibers. We shall now show that the resulting strength is less than the 
average fiber strength. 

Suppose a bundle of many fibers of equal length L is subjected to a 
strain €. In the bundle the same strain e is applied to every fiber. 
Suppose the fraction of unbroken fibers at the strain e is given by 

R(e) = exp [-L(e/e
0 

)°'] (9.84) 

where a and €
0 

are constants. The above function is shown 
schematically in Figure 9.13. The nominal stress of the bundle, which is 
the load divided by the original cross-sectional area of the fibers, is 
equal to 

a 

0.5 

/.0 

0 

Figure 9.13 Fraction of unbroken fibers at different 
strain levels. The function (1---:R(e)) is known as a 
Weibull distribution for the failure strain. 

(9.85) 

- The bundle-is said fo fiave failed when it cannot support ariy further
increase in load. That is, the bundle failure strain Yb satisfies

da 

I = 0de 
€= Yb 

(9.86) 



.. 

• 

408 introduction to composite materials micromechanics 409 

Using Equations 9.84 and 9.85 in Equation 9.86 leads to 

(9.87) 

The strength in stress of this bundle of length L is thus 

(9.88) 

where e is the base of the natural logarithm. 
Equation 9.84 can also be regarded as the probability of a single fiber 

surviving the strain e. Thus ( l-R) is the cumulative distribution of 
failure strain and is known as a Weibull distribution (see Appendix 9. l ). 
The average fiber failure strain Y1 

is thus given by 

where r( ·) is the gamma function. The corresponding average strength 
of the fiber of length L is 

(9.90) 

We can now study the ratio of the bundle strength to the average 
fiber strength, 

Xb(L) 
= EfYbR(Yb ) = 1 

X/L) Er Yt (ae)l fa. ro + 1/a) 
(9.91) 

Figure 9.14 shows the ratio Xb /Xr as a function of 1/a together with 
some experimental data. The factor 1 /a is a measure of scatter, almost 
equal to the coefficient of variation (see Appendix 9.2). Thus the 
bundle strength can be substantially lower than the fiber strength if the 
fiber strength exhibits a large scatter. 

Thus far we have shown that the longitudinal strength will be lower 
than maximum if the failure mode is dominantly one of the transverse 
crack propagation or of the longitudinal damage growth. An optimum 
strength is realized somewhere between these two extremes; that is, 

·­
•
• 

• 

• 

• 
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Figure 9.14 The bundle strength is lower than the 
average fiber strength. The reduction increases with 
1/a; i.e., the larger the scatter in fiber strength, the 
larger the reduction. The data are for E and S glass 
fibers, taken from [ 5, 6] . 

both transverse and longitudinal damage growths are localized to the 
fiber breaks to lead to an optimum composite strength. The three 
typical failure modes are shown pictorially in Figure 9.15. 

In the optimum condition the effect of broken fiber is limited to a- small regio1n:illength-5 a.s showri in Figure 9. 16.-Thus, unless two fiber
breaks are within this region, one broken fiber does not know the
e�istence of the other broken fiber. We then assume that the composite 
falls when all the fibers within this region fail. Thus the composite 
strength X can be taken as the strength of a fiber bundle of length 5
multiplied by vr plus the matrix contribution Vm a;

x 
[7] 
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mm 
WEAK MATRIX/ 
INTERFACE 

(a) 

OPTIMUM 

(b) 

BRITTLE, STRONG 
MATRIX/ INTERFACE 

(c/ 

Figure 9.1 S Three typical failure modes of unidirectional composite; (a) 
Longitudinal damage growth typical of dry fiber bundle; (b) mixed failure 
mode desired; (c) transverse crack propagation mode typical of brittle, 
homogeneous materials. 

l t t l l l 

r 
Note that x

1 
is the average streng!_� of a 

fiber of length L, not 8, and that amx is 
the average matrix stress at the time of 
the composite failure. 

L 

8 

The ratio (X-vm ci':,x )/(vr
X

r
) deter­

mined by Equation 9.92 is shown as a 
function of L/8 for three different values 
of 1/cx. in Figure 9.17. If the fiber 
strength has a small scatter, i.e., small 
1 /ex, the composite strength is close to 
(v

1
X

r 
+ Vm a:,) regardless of L/8. Other-

Figure 9.16 Zone of inter- wise, (X-vm a!x)/(v1X
1
) increases_ with

action between fiber 
/ s: . Lu. failures. The composite 

falls when sufficient number Strength usually exhibits . a larger 
of fibers fail within the zone scatter than modulus because the former 
of length o. depends much more on defects within a 
material than the latter. Since the probability of finding defects in­
creases with the volume of the material tested, the strength distribution 
will depend on the volume. In the case of fibers of the same cross� 
sectional area, the volume is proportional to the length, and hence we 
can have Equation 9.84. An example of length-dependence of strength 
is shown in Figure 9.18 for glass fibers. 

To determine 8, which is required to use Equation 9.92, consider a 

...... 
� 
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Figure 9.1 7 The strengthening efficiency of fiber 
depends on a and o. a is the shape parameter of the 
fiber strength distribution and o is the length of the 
fiber failure interaction zone. x

1 
is the average 

strength of fiber of length L. 
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Figure 9 .18 Length effects on average tensile strength of 
glass fibers. The average tensile strength decreases as the 
gage length increases. (Data from [8]). 

broken fiber in a matrix, Figure 9.19. As the fiber is pulled away from 
the matrix, the interfacial shear stress at the tip of the fiber increases. 
Assuming a rigid-perfectly plastic behavior at the interface, we see that 
the shear stress is equal to the yield stress T

y 
if there is a plastic slip at 
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1 longitudinal tension the role of the matrix was rather secondary. 
longitudinal compression, however, the matrix provides lateral 

,pport for fibers to carry compressive load without buckling. Without 
;ch support fibers can hardly resist any compression because of their 

small diameter. 
Consider a composite subjected to compression in the fiber direction, 

Figure 9.20. Fibers may have initial curvature as shown in the figure [9]. 
Suppose the initial deflection of fibers can be described by 

f. 
. 1TX 

v = s1n-o o 
l 

(9.100) 

where I is the half wavelength. When a compressive stress a is applied, 
the final deflection of fibers become 

7 

f. 1TX 
v = sin-

i J J J JJ J' 
(a I 

(TA 

�+dM

� 

dx
w.

l v� 

(TA 

(cl 

(T 

(T 

(b) 

Figure 9.20 Local buckling at a point in com­
posite; (a) initial state; (b) under a compressive 
stress a; (c) free body diagram for a representa­
tive volume element of cross-sectional area A. 

(9.101) 
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Let us take an infinitesimal representative volume element of length 
dx and cross-sectional area A at distance x. A free body diagram for this 
element is shown in Figure 9.20(c). The balance of moments requires 
that .. 

dM - V + aA dv = 0 

dx dx 
(9.102) 

The bending moment M is borne by the fiber while the shear Vis the 
result of the overall shear deformation of the representative volume 
element. Thus 

(9.103) 

Here £
1
11 is the bending stiffness of the fiber and E

s 
is the effective 

shear modulus of the composite'.· 
Substituting Equation 9.103 into Equation 9.102 and noting that 

11/A = v1wJ /12, we obtain an equation for a

(9.104) 

In actual composites, w1/l is much smaller than unity. The second term 
inside the brackets can therefore be neglected with the final result 

(9.105) 

Equation 9.105 describes a relation between the compressive stress 
and the amplitude of fiber deflection f. As a increases, f will increase 
reaching a critical value fc at which the composite fails. Thus the com­
pressive strength X' is given by 

(9.106) 
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Figure 9.19 Simplified stress distributions 
around and inside a broken fiber. A rigid­
perfectly plastic behavior is assumed at the 
interface. 

the interface. Denoting by a the stress in the fiber a distance x from the 
fiber end, Figure 9.19, we use the equilibrium condition for the fiber to 
obtain 

X a 
-=-

d 4Ty 
(9.93) 

Thus the maximum distance over which interfacial yielding occurs is 
limited by the maximum value of a which the fiber can sustain without 
failure in the interval (0, x). 

The average of a is obtained from Equations 9.140 and 9.141 in
= 

E . Appendix 9.1 using xmax in place of L. Since a
0 

= E
1

e
0

, quat10n 
9.90 can be used to replace a

0 
by X

1
. The final result is 

-
= X [L(a+ l)]l/aamax 

f X max 
(9.94) 

The distance xmax corresponding to a max then follows from substi­
tution of Equation (9.94) into Equation (9.93): 

� - -1. [ (a+ l)L/d]1 /(a+ 1) 
X ( X 

)
o,/(a+ 1) 

d 4Ty
(9.95) 
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Noting that S = 2x max , we finally obtain 

E_ = 2 _L [(a+ l)L/d] 1 / (a+ I)( X ) a/(a+ 1) 

d 4Ty 
(9.96) 

If the fiber strength has very little scatter, i.e., a is very large, then 
S/d approaches X

1
/(2r

y ), 

(9.97) 

The composite strength given by Equation 9.92 reduces to 

(9.98) 

where the second equality follows from the linear behavior of the 
matrix up to the composite failure. 

Equation 9.98 is called the rule-of-mixtures for the longitudinal 
strength. Although it has been derived under the assumption of deter­
ministic fiber strength, it has proven to provide a reasonable estimate 
for actual composites. It is possible that the combined effect of all the 
parameters in Equations 9.92 and 9.96 makes Equation 9.98 a reason­
able approximation. 

Since Equation 9.98 is based on the assumption of fiber failure trig­
gering the composite failure, the composite strength can be less than 
the matrix strength Xm if fiber volume fraction is too small. We can 
determine this minimum fiber volume fraction by substituting Xm for 
X and solving the resulting equation for v

1
; i.e., 

(9.99) 

Since Xm /X
1 

> Em /E
1
, see Figure 9.12, there is always a minimum 

fiber volume fraction required to strengthen matrix by fiber rein­
forcements. 
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There are two possible sources of composite failure: local shear fail­
ure and bending failure of fibers. The maximum local shear stress can 
be calculated from Equation 9.103. The fc is then the value off when 
this maximum local shear stress reaches the shear strength S of the 
composite: 

l S
t, =/, +--c o 1r Es 

(9.107) 

On the other hand, fibers can fail in bending when the maximum 
bending stress reaches the fiber strength X1. In this case we obtain 

f. = f. + J,J__ J_ Xr 
C O 

W 7r2 £ 
f f 

(9.108) 

Since 2l/w
1 

is much larger than unity, fc will be larger when calcu­
lated from Equation 9.108 than from Equation 9. 107. Therefore, the 
compressive failure of composite is caused by a local shear failure and 
the resulting compressive strength is 

X'=E 
1 

s l + (1rf
0

/l)/(SIEs) 
(9.109) 

When fibers are perfectly straight, f
0 

/l vanishes, and hence the com­
pressive strength becomes equal to the shear modulus. In actuality, 
however, X' is always less than Es. For boron/epoxy composites, the 
ratio X' /Es is slightly less than 0.5 whereas it is less than 0.25 for 
graphite/epoxy composites. Other than the initial deflection of fibers, 
there is another reason for such discrepancy: the nonlinearity in shear 
of unidirectional composites. In such cases we can show that Es in 
Equation 9.109 must be replaced by the secant shear modulus at fail­
ure. Note that the secant modulus is the ratio of the stress to the 
corresponding strain. Since the secant modulus at failure is lower than 
Es , with difference increasing with ductility, the resulting compressive 
strength will be lower. 

In transverse tension or compression the load sharing by matrix is of 
the same order of magnitude as that of fibers. In the elastic range the 
average matrix stress was seen to be about half the average fiber stress. 
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Since matrix is much weaker than fiber, matrix will fail first, causing 
the composite to fail. 

We recall that the composite stress is related to the average stresses in 
the constituents by 

(9.110) 

(9.111) 

The stress omy 
in matrix is not uniformly distributed; it reaches a 

maximum at the fiber-matrix interface. Therefore, failUI:e will be ini­
tiated at the fiber-matrix interface when the stress there reaches the 
matrix tensile strength Xm or the interface strength Xint , whichever is 
smaller. Introducing a stress concentration factor Kmy 

defined by 

we can express the transverse tensile strength of composite as 

Of course, X m should be rep laced by Xint if X int < X m . 

(9.112) 

(9,113) 

An exact determination of f/
y 

and Kmy 
is difficult because the 

behavior of matrix is nonlinear near failure, and is therefore beyond the 
scope of this book. However, we can make the following predictions 
based on Equation 9.113. 

If the matrix is linear elastic up to failure, then the factor [ 1 +

vtClfrJy -1)1 /Kmy 
is known to be less than unity and decreases with 

increasing fiber volume fraction. Therefore, the transverse tensile 
strength will always be less than the matrix tensile strength, the differ­
ence increasing with v 1.

On the other hand, if the matrix is ductile, stress concentrations can 
be relaxed so that Kmy 

becomes closer to unity. As a result the trans­
verse tensile strength can be greater than the matrix tensile strength. 
However, if there is a premature interface failure before the matrix goes 
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into the nonlinear range to allow a stress relaxation, the composite 
behavior will be the same as if the matrix is brittle. 

An experimental evidence for the observations just described is 
shown for glass/epoxy composites in Figure 9.21. Here the strength 
ratio Y/X m is seen to be as high as 2.3. The curve represents a constant 
composite strength of 30 MPa. Thus, the composite strength itself does 
not depend much on the matrix strength. At lower X

m 
the matrix is 

usually more ductile; consequently, a much better utilization of the 
matrix strength is realized. As Xm increases, the matrix becomes more 
and more brittle and the stress concentration increases. As a result, the 
composite strength is lower than the matrix strength. 

2.5 

• 

2.0 

1.5 

�6 • Y = 30MPo 

/.0 

0.5 

0 
0 50 /00 

Xm(MPo) 

Figure 9.21 The composite-to-matrix strength 
ratio in transverse tension decreases as the matrix 
strength increases. Note that the composite 
strength can be higher than the matrix strength. 
The data are for E-glass and S-glass/epoxy 
composites. 

The fracture surface in transverse tension is normal to the loading. 
However, in transverse compression it is approximately 45° to the load­
ing. Thus, the transverse compression failure is in fact a shear failure on 
the 45° plane. The tra·nsverse compressive strength is four to seven 
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times as high as the transverse tensile strength. 
Finally, the mechanisms of shear failure are similar to those of trans­

verse tension failure. The shear strength S can be studied using an 
equation similar to Equation 9.113: 

(9.114) 

where S
m 

and K
m

s are respectively the matrix shear strength and the 
matrix stress concentration factor in shear. Again, if the interface 
strength S

int 
is lower than Sm , S int should be used in place of Sm . 

Typical failure modes corresponding to the strengths discussed so far, 
except for the longitudinal tension, are schematically shown in Figure 
9.22. The longitudinal compression failure is accompanied by a brush­
like failure surface. In transverse tension or shear the failure surface is 
parallel to the fibers and normal to the specimen surfaces. The failure 
surface in transverse compression is still parallel to the fibers but makes 
an angle of about 45° with the loading direction. Strength values of 
those composites discussed in the preceding chapter are listed in 
Table 7.1. 

(a) (b) (cl 

Figure 9.22 Schematic views of typical failure modes: (a) longitudinal 
compression; (b) transverse tension and shear; and (c) transverse 
compression. 

8. sample problems

a. The weight of the matrix in a void-free glass/epoxy composite is
measured to be 36% of the weight of the composite. What is the fiber
volume fraction? The specific gravities of the epoxy and glass are 1. 2
and 2.6, respectively.
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Since vv = 0 and m
t = Pt

v
t

l p, a comparison of Equations 9.3 and 9.5 
yields 

(9.115) 

Substituting the known values of the variables into Equation 9.115, we 
obtain the fiber volume fraction as 

Vt =
1.2 X 0.64 = 0.45 

2.6 X 0.36 + 1.2 X 0.64 
(9.116) 

b. Using the representative volume element of Figure 9.4, calculate
the stresses otx and omx in a 60 vol% glass/epoxy composite result�ng 
from the application of a transverse tension of 10 MPa. Assume that e

tx 

= Emx , and use the properties in Table 9.1 and Equations 9.59 and 
9.60. 

The equations to be used are in Equation 9.44. The variables are: 

E
t 

= 72 GPa, v
t 

= 0.2 

Em = 3.45 GPa, Vm = 0.35 

Thus the stresses o
t
x and omx are 

-

O
t
x = -2.2 MPa 

-

omx = 3.3 MPa 

Note that, as expected, we have 

(9.117) 

(9.118) 

(9.119) 

c. Using the equations in Table 9.2 and the properties in Table 9.1
and Equations 9.59 and 9.60, determine the moduli Ex , Vx , E

y 
and E

9

for a 60 vol% boron/epoxy composite. 
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The composite moduli are determined simply by substituting the 
constituent properties into the equations in Table 9.2. First, the shear 
and plane strain bulk moduli are 

Et G
t 

= --- = 170.8 GPa, k
t 

= 284.7 GPa 
2(1 +v

t
) 

G = 
m 

Em 
--- = 1.28 GPa, km = 4.27 GPa 
2(1 +vm ) 

Next, we calculate the stress partitioning parameters: 

'Tis = 0.504, 'Tlk = 0.776 

'TlG = 0.618 

Finally, the composite moduli are 

Ex = 0.6 X 410 + 0.4 X 3.45 = 247.4 GPa 

Vx = 0.6 X 0.2 + 0.4 X 0.35 = 0.26 

Es = 

k
y 

= 

G
y 

= 

m = 

E
y 

= 

0.6 + 0.504 X 0.4 4.98 GPa = 

0.6/170.8 + 0.504 X 0.4/1.28 

0.6+0.776X0.4 
= 12_17GPa 0.6/284. 7 + 0. 776 X 0.4/4.27 

0.6 + 0.618 X 0.4 4.31 GPa = 

0.6/170.8 + 0.618 X 0.4/1.28 

1.013 

12.69 GPa 

(9.120) 

(9.121) 

(9.122) 
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d. For the same composite as in Problem c, determine the composite
moduli using the rule-of-mixtures equations in Section 4. Compare the 
results with those in Problem c.

The moduli Ex and Vx do not change. E
y 

and Es are determined 
from Equations 9.39 and 9.41, respectively: 

E
y 

= 8.52 GPa, Es
= 3.16 GPa (9.123) 

These moduli are lower than those calculated in Problem c.

e. For graphite fiber the shape parameter for the strength distribu­
tion is 7 .68. What is the expected ratio of the bundle strength to the 
average fiber strength? 

The strength ratio is given by Equation 9.91. Using a = 7.68 and 
noting that r( l + l /7.68) = 0.94, we obtain 

Xb 
= 

l 
= 0.72 

X1 (7.68 e)l/7.68 (0.94) 
(9.124) 

f The average strength of 25-mm long graphite fiber is 2.80 GPa with 
a coefficient of variation of l 5%. The fiber is used with an epoxy 
having a tensile strength of SO MPa and a modulus of 3.45 GPa to make 
a SO vol % graphite/epoxy composite. Assuming the interfacial yield 
stress r to be half the matrix tensile strength, (a) determine the length 
/j of t�e fiber failure interaction zone; (b) determine the composite 
strength using 15; and (c) compare the strength obtained in (b) with that 
from the rule-of-mixtures. The composite is also 25-mm long. 

The shape parameter a is calculated from Equation 9.145 and the 
fiber diameter is found in Table 9.1. Thus, the required variables are: 

a = 7.68, d = 7 µm 

Xr = 2.80 GPa, r
y

= 2SMPa 

L = 25 mm, vr = 0.5 (9.125) 

Vm 
= 0.5 

-* 
= 2800 X 3AS = 42 MPaam 230 
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(a) The length /j is determined from Equation 9.96:

15 = 0.88 mm 

(b) The composite strength follows from Equation 9.92

X = 1550 + 21 = 1571 MPa 

(9.126) 

(9.127) 

(c) The rule of mixtures for the strength is Equation 9.98 .. Therefore,
we have

X = 1400 + 21 = 1421 MPa (9.128) 

In the present case there is about 10% difference between Equations 
9.92 and 9.98. 

9. conclusions

The properties of a composite depend on the geometrical arrangement 
and the properties of its constituents. The exact analysis of such struc­
ture-property relationship is rather complex because of many variables 
involved. Therefore, we have introduced a few simplifying assumptions 
regarding the structural details and the state of stress within composite. 

We have seen that the concept of a representative volume element 
and the selection of appropriate boundary conditions are very im­
portant in the discussion of micromechanics. The composite stress and 
strain are defined as the volume averages of the stress and strain fields, 
respectively, within the representative volume element. By finding rela­
tions between the composite stresses and the composite strains in terms 
of the constituent properties, we can derive expressions for the com­
posite moduli. In addition, we have shown that the results of advanced 
methods can- be put in a form similar-to the rule-of-mixtures equations. 

Estimating the hygrothermal expansion coefficients is not much dif­
ferent from what we do for the elastic moduli. A major difference in 
analyzing the thermal expansion and swelling is that in the former the 
temperature does not change from fiber to matrix whereas in the latter 
the moisture concentration can vary drastically. Thus any analytical 
modeling should take into account such nonuniformity of the moisture 
concentration. 
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Prediction of composite strengths is rather difficult because there are 
many unknown variables and also because failure critically depends on 
defects. However, we can qualitatively explain the effects of con­
stituents including fiber-matrix interface on composite strengths. 
Certainly, failure modes can change depending on the material com­
binations. Thus, an analytical model developed for one material com­
bination cannot be expected to work for a different one. Ideally, a 
truly analytical model will be applicable to any material combination. 
However, such an analytical model is not available at present. There­
fore, we have chosen to provide models each of which is applicable only 
to a known failure mode. Yet, they can explain many of the effects of 
the constituents. 

appendix 9.1 

Consider a fiber of length L over which stress field is given by 

(9.129) 

where o a is the stress at x = L, so that f(L) = I. 
Now we divide the fiber into N segments so that in each segment the 

stress can be assumed to be uniform. Suppose the probability of the ith 
segment surviving the stress o

(i) 
is given by [R

0
(o

u)
)J t.x(O. Here 6:x

u> 
is the length of the ith segment. 

The probability of survival of the entire fiber is given by 

N 

R = 'Tr [Ro (o
(i)

)J Ax (i) 
i= 1 

(9.130) 

Taking natural logarithms of both sides, we rewrite Equation 9.130 as 

lnR = t 6x(i)
lnR

0 (o(i) ) (9.131) 
i=l 
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The right-hand side can be converted to an integral by taking N infi­
nitely large: 

lnR = f. L lnR
0

(o)dx (9.132) 

Therefore, R becomes 

(9.133) 

Suppose R
0 

is a Weibull distribution, 

(9.134) 

where 0/. and 0
0 

are called the shape parameter and scale parameter, 
respectively. Substitution of Equation 9.134 into 9.133 yields 

(9.135) 

Using Equation._9 . .129, we_can rewrite Equation 9.135 as 

(9.136) 

where 

(9.137) 

Equation 9.136 can be used to determine the probability of survival 
for any given stress field o. For example, suppose o is uniform over the 
fiber length. Then Equation 9.136 reduces to 

(9.138) 
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This equation can be easily converted to Equation 9.84 by noting that
a = EE. 

Next, suppose a varies linearly with x so that

X 
f(x) 

=-

L 

Substituting Equation 9.139 into 9.137, we obtain

_ (0+1)1/01
aao - ao 

L 

(9.139)

(9.140)

Thus, the average of 0
0 

that can be applied to the point of fiber failure
is given by (see Appendix 9.2) 

(9.141)

appendix 9.2 

Let us consider the probability of survival R(a) at stress a,

(9.142)

The function R(a) is also the probability that the strength is greater
than a. Therefore, the probability density function f(a) for strength is

dR a -1 [ ( a )°']f(a) = -- =- o°' exp - -
do 001 0

0 0 

(9.143)

The mean a and the standard deviations for the strength distribution
are respectively given by 

(9.144)

, = J." (o-O)f(o)clo = 00 [r (1 +� )-r• (I+¼ )Y 
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where r(·) is the gamma function. The coefficient of variation (C.V.) isthus 

(9.145)
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10. homework problems

a. A glass/epoxy specimen weighing 1 g was burnt and the weight of the
remaining fibers was found to be 0. 5 g. Knowing that the densities of
glass and epoxy are 2.6 and 1.25, respectively, determine the density
of the composite in the absence of voids. If the actual density of the
composite was measured to be 1.55, what is the void fraction?

b. For the composite bar
shown, determine the
average strain ex .

c. For the composite bar
shown, determine the
average stress o

x
.

d. Derive Equation 9.26.
e. Prove Equation 9.47.
f For a 60 vol % Gr/Ep

composite determine 
the moduli Ex, Ey, E

8
, 

and vx using the equa-

t
y 

Aluminum Sf881 

� i:.."""'"""""""'"'"""'------1[]_x 
i----�---,-1 8 I-

Steel 

Aluminum 

tions in Table 9.2. Compare the results with those from the rule-of­
mixtures equations of Section 4. Use the properties in Table 9.1 and 
Section 5. 

g. Derive Equation 9.49.
h. The maximum water absorption in a typical epoxy is 6%. What is the

maximum amount of water in a graphite/epoxy (v f = 0. 70)? Specific
gravities of the epoxy and composite are 1.25 and 1.6, respectively.

i. Derive Equation 9. 72.
j. Determine the curing stress o�

x 
in the matrix of a 60 vol OJo glass/

epoxy. Use the properties in Figure 9.11.
k. Determine the swelling coefficients for a 70 vol % graphite/epoxy.

The swelling coefficient of epoxy is 0.35, and graphite does not
absorb moisture.

/. In Figure 8.19 the longitudinal tensile strength does not suffer any 
reduction at elevated temperatures. Would the same trend be 
observed of the longitudinal compressive strength? If not, explain 
why. 

m. The shear strength of a composite with surface-treated fibers in­
creases with fiber volume fraction whereas the opposite is true when 
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fibers without surface treatment are used. Provide the reasons for 
such difference. Is such difference an indication that a better fiber-
matrix bond is achieved through fiber surface treatment? 

n. The density of a bulk epoxy at room temperature is Pmo . The
density Pm of the same epoxy in a composite is different from Pmo
because of the presence of residual stresses. Determine the ratio
Pm IPmo in terms of the curing strains ef and eJ;, the const�uent

- elastic moduli, and the__ fiber volume fractionv1. Assume that e1x =
€mx and Ofy = Omy .
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nomenclature 

A,A 1 ,A2 

C 
d 

f.fo.fc 
G 

Kms• Kmy 

m 

R(e) 

s 

s 

X,X' 

Y,Y' 
ex 

= Cross-sectional areas of representative volume element 
= Specific moisture concentration, in g/g 
= Fiber diameter 
= Amplitudes of fiber deflection 
= Shear modulus 
= Matrix stress concentration factors in shear and trans-

verse tension, respectively(= (am )max. lam )
= Plane strain bulk modulus 
= Dimensions of representative volume element 
= Fiber length 
= Half wavelength of fiber deflection 
= Mass 
= Mass fraction 
= Probability of survival at strain e or fraction of fibers 

surviving e 
= Specific gravity 
= Boundary displacements 
= Volume 
= Volume fractions 
= Final and initial fiber deflections, respectively 
= Width of a constituent phase in representative volume 

element 
= Shear strength 
= Longitudinal tensile and compressive strengths, re­

spectively 
= Transverse tensile and compressive strengths, respectively 
= Shape parameter for Weibull distribution of fiber failure 

strain 
= Gamma function 
= Length of fiber failure interaction zone 
= Scale parameter for Weibull distribution of fiber failure 

strain 
= Constant strain components 
= Volume-average strain components 

t 

1/o 
11k 

1/y 

1/s 
p 

ao 

O; 

O; 

Sub b
Sub[ 
Subm 
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= Stress partitioning parameter in transverse shear 
= Stress partitioning parameter ih plane strain hydrostatic 

tension and compression 
= Stress partitioning parameter in transverse tension and 

compression 
= Stress partitioning parameter in shear 
= Mass density 
= Ereo 

= Constant stress components 
= Boundary stress components 
= Volume-average stress components 
= Bundle 
= Fiber 
= Matrix 

Sub v = Void 
Suby = Transverse 
Sub int= Interface 
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appendix A 
transformation equations 

1. general transformation

The transformation equation of a tensor depends on its rank. In fact, 
the definition of a tensor is one that follows a particular transformation 
equation. Then, by definition, the quantity is a tensor of a given rank . 
Stress and strain are second rank tensors. Modulus and compliance are 
fourth rank tensors. Their transformation equations are: 

(A.I) 

(A.2) 

where T' are the transformed components of T. We use uncontracted 
notation here. The number of indices now correspond to the tensorial 
rank. Thea's are direction cosines of the new, transformed coordinate 
system relative to the old, original coordinate system. The usual range 
and summation conventions apply. When we have n dimensions, 

i,i, ... = 1, 2, ... n (A.3) 

The beauty and simplicity of tensors lie in their generality that only 
one transformation equation will suffice; i.e., 

(A.4) 

There is no conceptional difficulty if we want to define the transforma­

tion equation of a sixth rank tensor in four dimensional space. (It may 
take a little time writing it down.) 

433 
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2. specialized transformation

We have not followed the general tensorial approach in this book .. 
Instead we use specialized equations of various quantities. We want to 
list the reasons: 

• We decided to use contracted notation in order to reduce the
number of indices. The general definition of transformation must
be altered. In the contracted notation, we no longer can treat odd
rank tensors such as vectors.

• We decided to use engineering shear strains. The transformation
equation for strain must be altered accordingly. The strain trans­
formation in Table 2.5 is not the same as the stress transformation
in Table 2.1.

• We also decided to differentiate between the behavioral quantities
from material properties. Stress, strain and their integrals (stress
resultant, etc.) are the behavioral quantities, and are all second
rank tensors. Stiffness and compliance and their integrals (e.g.,
in-plane modulus) are material properties, and are fourth rank
tensors. Strength parameters F;i and G;i are also fourth rank
tensors. We have properties which are second rank tensors such as
thermal and moisture expansion coefficients and the strength
parameters F; and G ;•

The separation above is useful for composite materials. For the 
behavioral quantities, we are usually interested in the on-axis stress or 
strain using the transformation from a fixed reference, off-axis co­
ordinate system, say, the 1-2 axes. We normally go from the off-axis to 
the on-axis of a ply. For the material properties, we are interested in 
the off-axis properties from the on-axis orientations. It is the opposite 
of the stress, strain, etc. We let the material rotate while we stay fixed 
at the same reference coordinate system. The rotation is fJ for uni­
directional composites; 'Y for laminated composites; see Figure 4.12 for 
the rigid body rotation. The angle () is also used for the transformation 
of stress and strain. The latter fJ has the opposite meaning because it is 
intended to go from the off-axis to the on-axis. The transformation 
equations are listed separately in this Appendix. The opposite meaning 
of the angle of transformation is included in the equations. No sign 
change is necessary. 

appendix A 435 

3. transformation of o;, N;, M
1

Listed in this section are the transformation of stress and their integrals 
from the off-axis, 1-2 coordinate system to the on-axis l '-2' coordinate 

. 
' 

system.* Three formulations for the stress transformation will be given; 
viz., the power, and the multiple angle and the invariant functions. The 
transformation of the stress integrals can be done by direct substitution 
of N; or M; for o;, 

where 

table A.1 
"stress" transformation in power functions 

o; o; a; 

er.' I m2 n2 2mn 

o;' n2 m2 -2mn

�I -mn mn m2-n2

m =cost9, n = sint9 

table A.2 
"stress" transformation in multiple angle 

functions 

p q r 

(Tl 
I cos2t9 sin2t9 

o;' I -cos2t9 -sin2t9

�I -sin2t9 -cos2t9

r = 06 

(A.5) 

*The on-axis coordinates were the x-y for the unidirectional composite; and the x ·Y· coordinates 
for the i-th ply in a laminate. 

i 1 
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where 

table A.3 
"stress" transformation in invariant functions 

I 

o;' I 

o;' I 

Oi' 

I 

R = ..j q2 + ,2 

R 

cos2(9-90 ) 

- cos2(9-90 ) 

- sin2(9-9o) 

0 = ! tan-1 !:.. = ! sin-1 .!.. = ! cos-1 g_ 
0 

2 q 2  R 2 R 

4. transformation of e;, e7, k;

table A.4 
"strain" transformation in power functions 

£, €z €6 

£' mz nz mn 

£.' I! nz m2 -mn

£_I 
6 -2mn 2mn m2-n2 

table A.5 

"strain" transformation in multiple angle 

functions 

p q r 

t:", I I cos29 sin29 

€/ I -cos29 -sin29

€. I 
6 

-2sin29 2cos29 

(A.6) 

where 

where 
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table A.6 
"strain" transformation in invariant functions 

€,' 

t:/ 

""i 

I = 

R = 

00 
= 

I R 

I cos2(9-90) 

I -cos2(9-9o ) 

-2sin2(9-90 ) 

I 
p=-(e 1 

+e2 )
2 

.J q2 + ,2 

I t -1 r 1 . -1 r 1 -1 
q - an -=-sm -=-cos -

2 q 2 R 2 R 

(A.7) 

(A.8) 

These are material properties of the fourth rank tensor. The transforma­
tion goes from the l '-2' to. the 1-2 coordinate system. This transforma­
tion can also be viewed as subjecting the composite material through a 
rigid body rotation while the observer remains fixed at the 1-2 co­
ordinate system. We do not distinguish between the on-axis and off-axis 
here because the starting point (0 = 'Y = 0) may not be on the material 
symmetry axes. The material can be anisotropic. Angle 0 or 'Y is 
measured from the 1-2 to the 1 '-2' axes, having positive value if the 
rotation is-counterclockwise; 
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table. A.7 
"stiffness" transformation in power functions 

Q,� Qli Q,; Q/, 

Q,, m" n" 2m1n1 4m1n1 

QIZ n" m"  2m1n1 4m1n1 

Q,, mini mini m"+n" -4m1n1 

o,, m1n1 m1n1 -2m1n1 (mz- nz/
o,,, m'n - mn' mn'-m'n 2(mn'-m'n)

Q lfl mn' -m'n m"n-mn' 2/m'n-mn')

Q,� 

-4m'n
4mn'

2(m'n-mn') 

2(m'n-mn') 

m4-3m1n1 

3m1n1 -n4 

where m = cosO = cos-y, n = sinO = sin-y 

table A.8 
, "stiffness" transformation in multiple angle functions 

I u/I u'., u/ 

o,, u, cos2,9 cos4,9 -2sin2,9 

QII u, -cos28 cos4,9 2sin2,9 
o,, u,, -cos4,9

Q,,,, u, -cos4,9

Q,, j sin2,9 sin4,9 cos2,9 

Q� 
-4mn' 
4m'n 

2(mn'-m'n) 

2(mn'-m'n) 
3m1n1 - n" 

m 4-3m1n1 

u/ 

-sin4,9

-sin4,9

sin48

sin4,9

cos4,9 

QlfJ -f sin2,9 -sin48 cos2,9 -cos48

where

U: =½[3Q;1 +3Q�2 +2Q;2 +4Q� 6] =U1 

Vi = ½ [Q; 1 - Q�2 ] = U2 cos20 + 2U6 sin2
_
0

u; =.l[Q;1 + Q�2 -2Q; 2 -4Q� 6 ] = U3 cos40 + U7 sin40 8 
U� =.l[Q;1 +Q�2 +6Q;2 -4Q� 6 ] =U4 8 (A.9) 

Vi =½[Q;1 +Q� 2 -2Q;2 +4Q� 6 ] =Us 

Vi =½[Q;6 + Q�6] = -½U2 sin20 + U6 cos20

u; =½[Q;6 -Q� 6 ] = -U3 sin40 + U'l cos40 
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where

table A.10 

table A.9 
"stiffness" transformation in invariant functions 

I 

o,, u, 

011 u, 

Q,1 
u,, 

o,,, u, 

o,.

016 

R2 = 

�2 

R, R1 

cos2(.9+8,/ cos4(,9+81) 

- cos2(.9+8,I 

j sin2(,9+81/ 

-f sin2(.9+81 / 

2U� 1 t -1 - an 
2 u�

cos4(,9+81/ 

- cos4(.9+81/ 

- cos4(,9+81J 

sin4(,9+8
1

)

-sin4(,9+81/ 

v' u� 2 
+ u; 2 

I t -1 
u;

- an 
u; 

"compliance" transformation in power functions 
-

s,� 

s,, m" 

511 n" 
s,1 mi ni 

s,,,, 4m1n1 

s,,, 2m'n

s" 2mn'

sJ1 

n" 

m" 

- . 

mini 

4m2n1 

-2mn'

-2m'n

s,; 

2m 1n1 

2m2n1 

m"+n4 

-8m2n2 

2(mn'-m'n ) 

2/m'n-mn') 

- ~- ··-··· -

s,� 

m1n2 

m2n1 

- m1 n1 

(mZ-n1;1 

mn'-m'n

m'n -mn'

*Transformation equations are valid when /3 is symmetric.

.s;� 

-2m'n

2mn'
m'n-mn' 

4(m'n-mn')

m"-3m1n1 

3m2n2- n"

(A.10) 

.. 

S/, 

-2mn'

2m'n
mn'-m'n 

4(mn'-m'n) 
3m1n1-n" 

m"-3m2n2 
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table A.11 
"compliance" transformation in multiple angle functions 

I U/ uj u/ 

Su u, cos2tl cos4tl -2sin2tl 

S11 u, -cos2tl cos4tl 2sin26

, S,2 u,f -cos4tl

s66 u$ 
-4cos4tl 

S16 sin2tl 2sin 4tl 2cos2tl 

S26 s in2tl -2sin 4tl 2cos26 

where 

U� = .!_ [S� 1 - Si 2] = U2 cos20 + 2U6 sin20 
2 

uJ 

-sin4tl

-sin46 

sin46 

4sin46 

2cos46 

-2cos4tl

(A.11) 
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table A.12 
"compliance" transformation in invariant functions 

where 

--

S11 

S11 

S,1 

s66 

S16 

S16 

- --··-·"-· ·-·'" 

I 

u, 

u, 

u,f

u
$ 

R1 

61 

R2

«5;-

R, Rz

cos2{6+3,) cos4{6 +S2) 

- cos2{6+S,J cos4{tl +S1) 

-cos4{6+S1) 

-4cos4ftl+S2J

sin2{tl+a,J 2sin 4{tl+S1J 

s in2{tl+S,J -2sin 4/tl+Sz) 

= v u�2 +4U?

l t -1 
2U� 

- an 
u�

= v u� 2 
+ u; 2

1- -1 u;
-tan 

u�

7. transformation of G;

table A.13 
"strength in strain" transformation in power 
functions 

G,' Gj GI 

G, m2 n2 -2mn 

G2 n2 m2 2mn

G6 mn -mn m2- n2 

(A.12) 
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where 

where 

table A.14 

"strength in strain" transformation in multiple 
angle functions 

. 

pl qi rl 

G, I cos2t9 -sln2t9

G2 I - cos2t9 sln2t9

G6 sln2t9 -cos2t9

r' = G� 

table A.15 

"strength in strain" transformation in invariant 
functions 

I R 

G, I cos2(t9+t9o) 

G2 I - cos2(t9+t90
) 

G6 sln2(t9+t9o)

I 
I = p=-(G 1 +G2 ) 
2 

R = v q'2 + ,12 

00 

1 r' 1 . r' 1 q' = -tan- =-sm- =-cos-
2 q' 2 R 2 R 

(A.13)_ 

(A.14) 

8. transformation of F;, <X;, {j;

where 

table A.16 

"strength in stress" transformation jn power 
functions 

F.' 
I 

F.' 2 F.' 6 

F, m2 n2 -mn

Fz n2 m2 . mn

� 2mn -2mn m2-n2 

table A.17 

"strength in stress" transformation in multiple 
angle functions 

. 
--

F, 

Fz 

Fs 

table A.18 

. .  

pl 

I 

I 

qt rl 

cos2t9 -sln2t9

-cos2t9 sln2t9

2sln2t9 2cos2t9 

"strength in stress" transformation in invariant 
functions 

I R 

F, I cos2(t9+t90 ) 

,c; I -cos2(t9+t9o)

Fs 2 sln2 (t9+t90) 
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(A.14) 
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where 

R = v' q'2 + 7
12 

0 1 t 
-1 r' 1 . -1 r' 1 -t !L' 

0 = - an - = - sin - = - cos
2 q' 2 R 2 R -

(A.15) 

1. a1, Q11, A;j, ...

1 Pa= 1 Nm-2 

2. S1/'F1, cx;j, ...

3. F11

. appendix B 
unit conversion tables 

To convert 
Nm-2 

#/in2 kgf/mm2 

Into 

Nm-2 1 6.89; +3 9.81; +6 

#/in2 .145; -3 1 1.42; +3 

kgf/mm2 .102; -6 .703; -3 1 

To convert 
(Nµi-2 f

1 

(#/in2 f
1 -1 

Into (kgf/mm2 ) 

(Nm-2r1 1 .145; -3 .102; -6 

(#/in2r1 6.89; +3 1 .703; -3 

(kgf/mm2 r1 9.81; +6 1.42; +3 1 

To convert 
(Nm-2 f

2 

(#/in2 f
2 -2 

Into (kgf/mm2 ) 

(Nm-2t 1 21.0; -9 10.4; -15 
-2 

(#/in2
) 47.5; +6 1 49.4; -9 

-2 

(kgf/mm2 ) 96.2; +12 2.02; +6 1 

446 

i 
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To convert 
To convert 

8. D-,1 Nm #in kgf-mm 
4. N1 , A11 Into 

N/m #/in kgf/mm Into 

N/m 1 .175; +3 9.81; +3 
1 J = lNm Nm 1 .112; 0 9.80; -3 

#/in 5.71; -3 -i 56.0; 0 
_#in 8.8_5; 0 1 86.8; -3 

kgf/mm .102; -3 17.8; -3 1 
kgf-mm 102; 0 11.5; 0 

To convert To convert 
(Nmf1 

5. a.,1, a11 Into 
m/N in/# mm/kgf 9· f,tf• d11 Into 

(#inr1 (kgf-mmr1 

m/N 5.71; -3 .102; -3 (Nmf1 1 8.85; 0 102; 0 

in/# .175; +3 1 17.8; -3 (#inr1 .112; 0 1 11.5;0 

mm/kgf 9.81; +3 56.0; 0 1 
(kgf-mmr1 9.80; -3 86.8; -3 l 

6. M1, B11 

To convert To convert 
# kgf 10. k

1 
m-1 in-1 mm-1 

Into Into 

N l 4.45; 0 9.81; 0 m-1 1 39.4; 0 l; +3 

# .225; 0 1 2.20; 0 
in-1 25.4; -3 1 25.4; 0 

kgf .102; 0 .454; 0 1 
mm-1 1; -3 39.4; -3 1 

1· f311 
To convert 

N°"l #-1 kgf"l 

Into 

N°"l 1 .225; 0 .102; 0 
#-1 4.45; 0 1 .454; 0 
kgC1 9.81; 0 2.20; 0 1 
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Activation energy, 340 

Aluminum, 291 
Aramid, 396 

Aramid/epoxy, 19 

Axisymmetry, 395 

Balance 
of energy, 330, 335 

of mass, 334 

Bending 

three-point, 208 

vibration, 215 
Boron, 378, 397, 401 

Boron/epoxy, 19,397,416 

Boundary conditions, 337, 353, 382, 

387 

Boundary displacement, 384, 38S 

Bundle, 407 

failure strain, 407 

strength, 408 

Chemical shrinkage, 345 
Compliance, 13, 19, 343 

coupling, 226 
in-plane, 120, 226, 345 

flexural, 176, 226 
off-axis, 88  

Composite 
density, 379, 380 

mass, 379 

stress, 381, 383 

strain, 381, 384 

volume, 377 

Compression 

longitudinal, · S 

transverse, S 

Compressive strength 

longitudinal, 282 

transverse, 283 

index 

Concentric cylinder model, 394, 39S 

C.onstituent
average stress in, 381
average strain in, 381 

compliance of, 386 
constitutive relations of, 386 

Crosslinking, 34S 

Cumulative distribution, 408 

Cure 

process, 345 

temperature, 345 

Curing 

curvature, 348 

in-plane strain, 348 

strain, 346 

Curvature, 169, 173 

Design, 310 
Displacement 

in-plane, 6 
out-of-plane, 171 

Elastic moduli, 377 

Elastic range, 416 

Engineering constants, 13, 19 

flexural, 177 

in-plane, 121 

off-axis, 97 

Environmental change, 334 
Epoxy, 397 

Equilibrium state, 400 
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Expansion coefficients, 352 
hygrothermal, 377 
swelling, 334, 352, 403 

thermal, 342, 344, 354 

Fabrication 
process, 345 
stress, 345 

Failure, 280, 405 
modes, 419 
ply, 35 
ultimate, 159 

Failure criteria, 278 
maximum strain, 159, 279 
maximum stress, 159, 279 
quadratic in strain, 287 
quadratic in stress, 280 
von Mises, 280, 286 

Failure envelope 
in strain space, 291 
in stress space, 288 

Fiber 
bending stiffness, 415 
density, 378 
diameter, 378 
failure strain, 408 
length, 407 
modulus, 378 
strength, 378, 408 

Fick's equation, 336 
First ply failure, 34, 159, 306 

approximate envelope, 315 
envelope, 311 

Flexural strength, 35 
'Fourier's equation, 335 

Gamma function, 427 
Gas constant, 340 
Geometric factors for 

coupling modulus, 234, 237 
flexural modulus, 180, 237 
in-plane modulus, 124, 237 

Glass, 378, 397 
Glass/epoxy, 19, 339, 382 
Graphite, 378 
Graphite/epoxy, i9. 339, 397

Heat conduction, 330 
Honeycomb core, 179 
Hybrid, 213 
Hygrothemal properties, 340, 400 

Index 
free, 218 
summation, 218 

Interaction, 280, 284 
Interface, 405 

strength, 365, 417 
yielding, 412 

Invariants of 
compliance, 92, 93 
in-plane modulus, 129 
modulus, 75, 76 
strain, 54 
stress, 41 

Kevlar, 378 
Kevlar/epoxy, 19 

Laminate 
angle-ply, 136, 200 
anti-symmetric, 249, 357 
balanced, 137 
code, 116 
cross-ply, 131, 189, 239 
general, 21 7 
general bidirectional, 149 
general Pi/4, 146 
homogeneous, 226 
quasi-isotropic, 142 
sandwich, 167, 194 
symmetric, 115, 227 
unsymmetric, 239, 354 

Linear combinations of 
compliance, 92 
modulus, 73 
strain, 53 
stress, 39 

Load sharing, 405 
Loading path, 60, 313 
Local buckling, 414 

Local shear failure, 416 
Longitudinal damage growth, 406 

Mass fraction, 379, 380 
Material symmetry axes, 70, 330 
Matrix 

moduli, 392 
shear strength, 419 
tensile strength, 417 

Maximum shear stress, 48 
Mechanical strain, 342 
Micromechanics, 377 
Minimum fiber volume fraction, 413 
Modulus, 14, 20 

coupling, 223 
flexural, 173, 223 
in-plane, 118, 223 
off-axis, 66, 77 

Mohr's circle for 
flexural modulus, 181 
in-plane modulus, 129 
modulus, 88 
strain, 57, 60 
stress, 42, 46 

Moisture, 352 
absorption, 337, 400 
concentration, 333, 401 
concentration gradient, 333 
content, 337 
desorption, 337 
diffusion, 331 
effects of, 362 

Moment, 169, 219 
bending, 170 
twisting, 170 

Moment-curvature relations, 169, 174, 220 

Nonmechanical 
curvature, 349 
moment, 350 
strain, 342, 401 
stress resultant, 350 

Normal coupling, 69, 100, 122, 152 
Normalizing factor, 185 
Notation, 3, 8 

Off-axis configuration, 32 
On-axis conriguration, 32 
Optimum strength, 311, 411 

index 453 

Parallel axis theorem, -256 
Phase angle in transformation of 

compliance, Appendix A 
in-plane modulus, 130 
modulus, Appendix A 
strain, 54 

Ply 
stress, 4 1  

failure, 35 
group number, 127 
number, 182 
orientation, 71 
strain, 157 
stress, 157 

Poisson's ratio 
fiber, 397 
in-plane, 122 
longitudinal or major, 10 
matrix, 397 
transverse or minor, 11 

Pre-exponential factor, 340 
Prepreg, 345 
Principal direction, 4 7 
Principal stress components, 4 7 
Probability density function, 426 
Probability of survival, 424 

Relative humidity, 340 
Representative volume element, 379, 415 
Residual strain, 348 
Residual stress, 345 
Rigid body rotation, 62 
Rule-of-mixtures, 127, 390, 392 

Shear coupling, 69, 204 
Shear modulus, 389 

in-plane, 121, 154 
longitudinal, 12, 390 
secant, 416 
transverse, 399 
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Shear strength, 419 
Sizing, 310 
Sp,;cific gravity, 401 
Specific heat, 334 
Specific moisture concentration, 334 
Stacking sequence, 116 
Stiffness, 1, 18 
Strain, 2, 6 

compatibility, 391 
generalized, 228 
in-plane, 119 
off-axis, 66 
on-axis, 66 

Strain-displacement relations, 6, SO, 172 
Strain energy density, 16, 385 
Strength, 288, 405 

in-plane, 306 
off-axis, 299 
off-axis shear, 300 

Strength distribution, 410 
mean, 416 
standard deviation, 416 

Strength parameters 
in strain, 287, 294 
in stress, 281, 29 3 
linear, 281 
quadratic, 281 

Strength ratio, 31, 302 
Stress, 2 

applied, 383 
average, 3, 116 
average fiber, 394 

, average matrix, 394 
equivalent, 349 
local, 3 
off-axis, 34, 66 
on-axis, 34, 66 

Stress concentration factor, 417, 419 
Stress partitioning parameters, 394, 398 
Stress relaxation, 418 
Stress resultant, 120, 219 
Stress-strain relations, 2, 8 

in-plane, 116, 219 
off-axis, 66, 68 
on-axis, 13, 66 

Successive ply failures, 34 
Swelling strain, 349, 401 
Symmetry, 280 

compliance and modulus, 16, 101 
general orthotropic, 32 
isotropic, 17 

Symmetry: 
material, 9 
midplane, 116, 243 
orthotropic, 10, 59, 149 
square symmetric, 17, 58 
transversely isotropic, 344 

Temperature, 330, 401 
effects of, 363 

gradient, 330 
stress-free, 355 

Tensile strength 
longitudinal, 282 
transverse, 282 

Tension 
longitudinal, S

transverse, S

Thermal 
conductivity, 330 
diffusivity, 334 
moment, 347 
strain, 349 
stress resultant, 34 7 

Transformation equations for 
compliance, 89 
concentration gradient, 333 
coupling compliance, 270 
coupling modulus, 270 
flexural modulus, Appendix A 
heat flux, 332 
in-plane modulus, Appendix A 
modulus, 69, 74 
moisture diffusion coefficient, 334 
moisture flux, 332 
strain, 52 
stress, 38 
temperature gradient, 332 
thermal conductivity, 332 

Transverse crack propagation, 406 
Transverse plane strain bulk modulus, 399 

Ultimate strength, 35 
Unidirectional composite, 1 

Void fraction, 380 
Volume fraction 

fiber, 379 
ply, 127 

Volumetric strain, 344 

Weibull distribution, 408, 425 
scale parameter, 425 
shape parameter, 411, 42S 

Weighting factor, 183 
Width ratio, 387 

Width-to-thickness ratio, 354 

Yield stress, 362 
Young's modulus 

in-plane, 121, 154 
lorigitudinal, 10 
transverse, 10 
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